AdaptiveInducedPCE

class pyapprox.surrogates.AdaptiveInducedPCE(num_vars, cond_tol=100.0, induced_sampling=True, fit_opts={'omp_tol': 0, 'precond_func': <function christoffel_preconditioning_function>})[source]

Bases: SubSpaceRefinementManager

An adaptive PCE built using induced sampling and generalized sparse grid like refinement.

Methods Summary

__call__(samples[, return_grad])

Call self as a function.

add_new_subspaces(new_subspace_indices)

allocate_initial_samples()

build([callback])

create_new_subspaces_data(new_subspace_indices)

fit()

get_active_unique_poly_indices()

increment_samples(current_poly_indices, ...)

num_training_samples()

set_function(function[, var_trans, pce])

set_polynomial_chaos_expansion([pce])

set_preconditioning_function(precond_func)

precond_func : callable

Methods Documentation

__call__(samples, return_grad=False)[source]

Call self as a function.

add_new_subspaces(new_subspace_indices)[source]
allocate_initial_samples()[source]
build(callback=None)[source]
create_new_subspaces_data(new_subspace_indices)[source]
fit()[source]
get_active_unique_poly_indices()[source]
increment_samples(current_poly_indices, unique_poly_indices)[source]
num_training_samples()[source]
set_function(function, var_trans=None, pce=None)[source]
set_polynomial_chaos_expansion(pce=None)[source]
set_preconditioning_function(precond_func)[source]
precond_funccallable

Callable function with signature precond_func(basis_matrix,samples)