get_M0_and_M1_matrices¶
-
pyapprox.optimal_experimental_design.
get_M0_and_M1_matrices
(homog_outer_prods, design_prob_measure, noise_multiplier, regression_type)[source]¶ Compute the matrices M0 and M1 used to compute the asymptotic covariance matrix C(μ)=M−11M0M−1 of the linear model
y(x)=F(x)θ+η(x)ϵ.For least squares
M0=M∑i=1η(xi)2f(xi)f(xi)TriM1=M∑i=1f(xi)f(xi)Triand for quantile regression
M0=M∑i=11η(xi)f(xi)f(xi)TriM1=M∑i=1f(xi)f(xi)Tri- Parameters
- homog_outer_prodsnp.ndarray(num_factors,num_factors,num_design_pts)
The outer products f(xi)f(xi)T for each design point xi
- design_prob_measurenp.ndarray (num_design_pts)
The weights ri for each design point
- noise_multipliernp.ndarray (num_design_pts)
The design dependent noise function η(x)
- regression_typestring
The method used to compute the coefficients of the linear model. Currently supported options are
lstsq
andquantile
.
- Returns
- M0np.ndarray (num_factors,num_factors)
The matrix M0
- M1np.ndarray (num_factors,num_factors)
The matrix M1