get_M0_and_M1_matrices

pyapprox.optimal_experimental_design.get_M0_and_M1_matrices(homog_outer_prods, design_prob_measure, noise_multiplier, regression_type)[source]

Compute the matrices M0 and M1 used to compute the asymptotic covariance matrix C(μ)=M11M0M1 of the linear model

y(x)=F(x)θ+η(x)ϵ.

For least squares

M0=Mi=1η(xi)2f(xi)f(xi)Tri
M1=Mi=1f(xi)f(xi)Tri

and for quantile regression

M0=Mi=11η(xi)f(xi)f(xi)Tri
M1=Mi=1f(xi)f(xi)Tri
Parameters
homog_outer_prodsnp.ndarray(num_factors,num_factors,num_design_pts)

The outer products f(xi)f(xi)T for each design point xi

design_prob_measurenp.ndarray (num_design_pts)

The weights ri for each design point

noise_multipliernp.ndarray (num_design_pts)

The design dependent noise function η(x)

regression_typestring

The method used to compute the coefficients of the linear model. Currently supported options are lstsq and quantile.

Returns
M0np.ndarray (num_factors,num_factors)

The matrix M0

M1np.ndarray (num_factors,num_factors)

The matrix M1