AlphabetOptimalDesign¶
-
class
pyapprox.optimal_experimental_design.
AlphabetOptimalDesign
(criteria, design_factors, noise_multiplier=None, opts=None, regression_type='lstsq')[source]¶ Bases:
object
Notes
# Even though scipy.optimize.minimize may print the warning # UserWarning: delta_grad == 0.0. Check if the approximated function is # linear. If the function is linear better results can be obtained by # defining the Hessian as zero instead of using quasi-Newton # approximations. # The Hessian is not zero.
Methods Summary
get_objective_and_jacobian
(design_factors, …)solve
([options, init_design, return_full])solve_nonlinear_bayesian
(samples, design_samples)solve_nonlinear_minimax
(parameter_samples, …)Methods Documentation