AdvectionDiffusionSourceInversionModel

class pyapprox.fenics_models.advection_diffusion_wrappers.AdvectionDiffusionSourceInversionModel(final_time, degree, qoi_functional, second_order_timestepping=True, options={})[source]

Bases: pyapprox.fenics_models.advection_diffusion_wrappers.AdvectionDiffusionModel

Methods Summary

get_boundary_conditions_and_function_space(…)

By Default the boundary conditions are deterministic, Dirichlet and and set to zero

get_diffusivity(random_sample)

Use the random diffusivity specified in [JEGGIJNME2020].

get_forcing(random_sample)

By Default the forcing is deterministic and set to

initialize_random_expressions(random_sample)

Overide this class to split random_samples into the parts that effect the 5 random quantities

Methods Documentation

get_boundary_conditions_and_function_space(random_sample)[source]

By Default the boundary conditions are deterministic, Dirichlet and and set to zero

get_diffusivity(random_sample)[source]

Use the random diffusivity specified in [JEGGIJNME2020].

get_forcing(random_sample)[source]

By Default the forcing is deterministic and set to

\[(1.5+\cos(2\pi t))*cos(x_1)\]

where \(t\) is time and \(x_1\) is the first spatial dimension.

initialize_random_expressions(random_sample)[source]

Overide this class to split random_samples into the parts that effect the 5 random quantities