BayesianBatchKLOED
- class pyapprox.expdesign.BayesianBatchKLOED(ndesign_candidates, obs_fun, noise_std, prior_variable, out_quad_opts, in_quad_opts, nprocs=1, max_ncollected_obs=2, ndata_per_candidate=1, data_risk_fun=<function oed_data_expectation>)[source]
Bases:
AbstractBayesianOED
Compute open-loop OED my maximizing KL divergence between the prior and posterior.
Methods Summary
compute_expected_utility
(...[, return_all])return_all true used for debugging returns more than just utilities and also returns itermediate data useful for testing
populate
()Methods Documentation