laplace_posterior_approximation_for_linear_models
- pyapprox.bayes.laplace_posterior_approximation_for_linear_models(linear_matrix, prior_mean, prior_hessian, noise_covariance_inv, obs, bvec=None)[source]
Compute the mean and covariance of the Laplace posterior of a linear model with a Gaussian prior
Given some data d and a linear forward model, A(x) = Ax+b, and a Gaussian likelihood and a Gaussian prior, the resulting posterior is always Gaussian.
- Parameters:
- linear_matrix(num_qoi, num_dims) matrix
The matrix reprsenting the linear forward model.
- prior_mean(num_dims, 1) vector
The mean of the Gaussian prior
- prior_hessian: (num_dims, num_dims) matrix
The Hessian (inverse of the covariance) of the Gaussian prior
- noise_covariance_inv(num_qoi, num_qoi) matrix
The inverse of the covariance of the osbervational noise
- obs(num_qoi, 1) vector
The observations
- bvecnp.ndarray(num_qoi)
The deterministic shift of the linear model
- Returns:
- posterior_mean(num_dims, 1) vector
The mean of the Gaussian posterior
- posterior_covariance: (num_dims, num_dims) matrix
The covariance of the Gaussian posterior