run_sensitivity_analysis
- pyapprox.analysis.run_sensitivity_analysis(method, fun, variable, *args, **kwargs)[source]
Compute sensitivity indices for a model.
- Parameters:
- methodstring
The name of the sensitivity method
- funcallable
The function to be approximated
fun(z) -> np.ndarray
where
z
is a 2D np.ndarray with shape (nvars, nsamples) and the output is a 2D np.ndarray with shape (nsamples, nqoi)- variablepya.IndependentMarginalsVariable
Object containing information of the joint density of the inputs z. This is used to generate random samples from this join density
- args: kwargs
optional keyword arguments
- kwargs: kwargs
optional keyword arguments
- For more details on method specfici args, kwargs and results attributes see
pyapprox.analysis.sensitivity_analysis.sampling_based_sobol_indices()
pyapprox.analysis.sensitivity_analysis.bootstrapped_borgonovo_sensivities()
pyapprox.analysis.sensitivity_analysis.morris_sensitivities()
pyapprox.analysis.sensitivity_analysis.gpc_sobol_sensitivities()
pyapprox.analysis.sensitivity_analysis.analytic_sobol_indices_from_gaussian_process()
: func:pyapprox.analysis.sensitivity_analysis.sparse_grid_sobol_sensitivities
- Returns:
- resultSensitivityResult
Object containing the sensitivity indices