Compadre  1.6.0
Compadre_LinearAlgebra.cpp
Go to the documentation of this file.
1 // @HEADER
2 // *****************************************************************************
3 // Compadre: COMpatible PArticle Discretization and REmap Toolkit
4 //
5 // Copyright 2018 NTESS and the Compadre contributors.
6 // SPDX-License-Identifier: BSD-2-Clause
7 // *****************************************************************************
8 // @HEADER
10 
11 #include "KokkosBatched_UTV_Decl.hpp"
12 #include "KokkosBatched_SolveUTV_Decl_Compadre.hpp"
13 
14 using namespace KokkosBatched;
15 
16 namespace Compadre{
17 namespace GMLS_LinearAlgebra {
18 
19  template<typename DeviceType,
20  typename AlgoTagType,
21  typename MatrixViewType_A,
22  typename MatrixViewType_B,
23  typename MatrixViewType_X>
25  MatrixViewType_A _a;
26  MatrixViewType_B _b;
27 
30  int _M, _N, _NRHS;
32 
33  KOKKOS_INLINE_FUNCTION
35  const int M,
36  const int N,
37  const int NRHS,
38  const MatrixViewType_A &a,
39  const MatrixViewType_B &b,
40  const bool implicit_RHS)
41  : _a(a), _b(b), _M(M), _N(N), _NRHS(NRHS), _implicit_RHS(implicit_RHS)
42  { _pm_getTeamScratchLevel_0 = 0; _pm_getTeamScratchLevel_1 = 0; }
43 
44  template<typename MemberType>
45  KOKKOS_INLINE_FUNCTION
46  void operator()(const MemberType &member) const {
47 
48  const int k = member.league_rank();
49 
50  // workspace vectors
51  scratch_vector_type ww_fast(member.team_scratch(_pm_getTeamScratchLevel_0), 3*_M);
52  scratch_vector_type ww_slow(member.team_scratch(_pm_getTeamScratchLevel_1), _N*_NRHS);
53 
54  scratch_matrix_right_type aa(_a.data() + TO_GLOBAL(k)*TO_GLOBAL(_a.extent(1))*TO_GLOBAL(_a.extent(2)),
55  _a.extent(1), _a.extent(2));
56  scratch_matrix_right_type bb(_b.data() + TO_GLOBAL(k)*TO_GLOBAL(_b.extent(1))*TO_GLOBAL(_b.extent(2)),
57  _b.extent(1), _b.extent(2));
58  scratch_matrix_right_type xx(_b.data() + TO_GLOBAL(k)*TO_GLOBAL(_b.extent(1))*TO_GLOBAL(_b.extent(2)),
59  _b.extent(1), _b.extent(2));
60 
61  // if sizes don't match extents, then copy to a view with extents matching sizes
62  if ((size_t)_M!=_a.extent(1) || (size_t)_N!=_a.extent(2)) {
63  scratch_matrix_right_type tmp(ww_slow.data(), _M, _N);
64  auto aaa = scratch_matrix_right_type(_a.data() + TO_GLOBAL(k)*TO_GLOBAL(_a.extent(1))*TO_GLOBAL(_a.extent(2)), _M, _N);
65  // copy A to W, then back to A
66  Kokkos::parallel_for(Kokkos::TeamThreadRange(member,0,_M),[&](const int &i) {
67  Kokkos::parallel_for(Kokkos::ThreadVectorRange(member,0,_N),[&](const int &j) {
68  tmp(i,j) = aa(i,j);
69  });
70  });
71  member.team_barrier();
72  Kokkos::parallel_for(Kokkos::TeamThreadRange(member,0,_M),[&](const int &i) {
73  Kokkos::parallel_for(Kokkos::ThreadVectorRange(member,0,_N),[&](const int &j) {
74  aaa(i,j) = tmp(i,j);
75  });
76  });
77  member.team_barrier();
78  aa = aaa;
79  }
80 
81  if (std::is_same<typename MatrixViewType_B::array_layout, layout_left>::value) {
82  scratch_matrix_right_type tmp(ww_slow.data(), _N, _NRHS);
83  // coming from LU
84  // then copy B to W, then back to B
85  auto bb_left =
86  scratch_matrix_left_type(_b.data() + TO_GLOBAL(k)*TO_GLOBAL(_b.extent(1))*TO_GLOBAL(_b.extent(2)),
87  _b.extent(1), _b.extent(2));
88  Kokkos::parallel_for(Kokkos::TeamThreadRange(member,0,_N),[&](const int &i) {
89  Kokkos::parallel_for(Kokkos::ThreadVectorRange(member,0,_NRHS),[&](const int &j) {
90  tmp(i,j) = bb_left(i,j);
91  });
92  });
93  member.team_barrier();
94  Kokkos::parallel_for(Kokkos::TeamThreadRange(member,0,_N),[&](const int &i) {
95  Kokkos::parallel_for(Kokkos::ThreadVectorRange(member,0,_NRHS),[&](const int &j) {
96  bb(i,j) = tmp(i,j);
97  });
98  });
99  }
100 
101  scratch_matrix_right_type uu(member.team_scratch(_pm_getTeamScratchLevel_1), _M, _N /* only N columns of U are filled, maximum */);
102  scratch_matrix_right_type vv(member.team_scratch(_pm_getTeamScratchLevel_1), _N, _N);
103  scratch_local_index_type pp(member.team_scratch(_pm_getTeamScratchLevel_0), _N);
104 
105  bool do_print = false;
106  if (do_print) {
107  Kokkos::single(Kokkos::PerTeam(member), [&] () {
108 #if KOKKOS_VERSION >= 40200
109  using Kokkos::printf;
110 #endif
111  //print a
112  printf("a=zeros(%lu,%lu);\n", aa.extent(0), aa.extent(1));
113  for (size_t i=0; i<aa.extent(0); ++i) {
114  for (size_t j=0; j<aa.extent(1); ++j) {
115  printf("a(%lu,%lu)= %f;\n", i+1,j+1, aa(i,j));
116  }
117  }
118  //print b
119  printf("b=zeros(%lu,%lu);\n", bb.extent(0), bb.extent(1));
120  for (size_t i=0; i<bb.extent(0); ++i) {
121  for (size_t j=0; j<bb.extent(1); ++j) {
122  printf("b(%lu,%lu)= %f;\n", i+1,j+1, bb(i,j));
123  }
124  }
125  });
126  }
127  do_print = false;
128 
129  /// Solving Ax = b using UTV transformation
130  /// A P^T P x = b
131  /// UTV P x = b;
132 
133  /// UTV = A P^T
134  int matrix_rank(0);
135  member.team_barrier();
136  TeamVectorUTV<MemberType,AlgoTagType>
137  ::invoke(member, aa, pp, uu, vv, ww_fast, matrix_rank);
138  member.team_barrier();
139 
140  if (do_print) {
141  Kokkos::single(Kokkos::PerTeam(member), [&] () {
142 #if KOKKOS_VERSION >= 40200
143  using Kokkos::printf;
144 #endif
145  printf("matrix_rank: %d\n", matrix_rank);
146  //print u
147  printf("u=zeros(%lu,%lu);\n", uu.extent(0), uu.extent(1));
148  for (size_t i=0; i<uu.extent(0); ++i) {
149  for (size_t j=0; j<uu.extent(1); ++j) {
150  printf("u(%lu,%lu)= %f;\n", i+1,j+1, uu(i,j));
151  }
152  }
153  });
154  }
155  TeamVectorSolveUTVCompadre<MemberType,AlgoTagType>
156  ::invoke(member, matrix_rank, _M, _N, _NRHS, uu, aa, vv, pp, bb, xx, ww_slow, ww_fast, _implicit_RHS);
157  member.team_barrier();
158 
159  }
160 
161  inline
162  void run(ParallelManager pm) {
163  typedef typename MatrixViewType_A::non_const_value_type value_type;
164  std::string name_region("KokkosBatched::Test::TeamVectorSolveUTVCompadre");
165  std::string name_value_type = ( std::is_same<value_type,float>::value ? "::Float" :
166  std::is_same<value_type,double>::value ? "::Double" :
167  std::is_same<value_type,Kokkos::complex<float> >::value ? "::ComplexFloat" :
168  std::is_same<value_type,Kokkos::complex<double> >::value ? "::ComplexDouble" : "::UnknownValueType" );
169  std::string name = name_region + name_value_type;
170  Kokkos::Profiling::pushRegion( name.c_str() );
171 
172  _pm_getTeamScratchLevel_0 = pm.getTeamScratchLevel(0);
173  _pm_getTeamScratchLevel_1 = pm.getTeamScratchLevel(1);
174 
175  int scratch_size = scratch_matrix_right_type::shmem_size(_N, _N); // V
176  scratch_size += scratch_matrix_right_type::shmem_size(_M, _N /* only N columns of U are filled, maximum */); // U
177  scratch_size += scratch_vector_type::shmem_size(_N*_NRHS); // W (for SolveUTV)
178 
179  int l0_scratch_size = scratch_vector_type::shmem_size(_N); // P (temporary)
180  l0_scratch_size += scratch_vector_type::shmem_size(3*_M); // W (for UTV)
181 
182  pm.clearScratchSizes();
183  pm.setTeamScratchSize(0, l0_scratch_size);
184  pm.setTeamScratchSize(1, scratch_size);
185 
186  pm.CallFunctorWithTeamThreadsAndVectors(*this, _a.extent(0));
187  Kokkos::fence();
188 
189  Kokkos::Profiling::popRegion();
190  }
191  };
192 
193 
194 
195 template <typename A_layout, typename B_layout, typename X_layout>
196 void batchQRPivotingSolve(ParallelManager pm, double *A, int lda, int nda, double *B, int ldb, int ndb, int M, int N, int NRHS, const int num_matrices, const bool implicit_RHS) {
197 
198  typedef Algo::UTV::Unblocked algo_tag_type;
199  typedef Kokkos::View<double***, A_layout, Kokkos::MemoryTraits<Kokkos::Unmanaged> >
200  MatrixViewType_A;
201  typedef Kokkos::View<double***, B_layout, Kokkos::MemoryTraits<Kokkos::Unmanaged> >
202  MatrixViewType_B;
203  typedef Kokkos::View<double***, X_layout, Kokkos::MemoryTraits<Kokkos::Unmanaged> >
204  MatrixViewType_X;
205 
206  MatrixViewType_A mat_A(A, num_matrices, lda, nda);
207  MatrixViewType_B mat_B(B, num_matrices, ldb, ndb);
208 
210  <device_execution_space, algo_tag_type, MatrixViewType_A, MatrixViewType_B, MatrixViewType_X>(M,N,NRHS,mat_A,mat_B,implicit_RHS).run(pm);
211 
212 }
213 
214 template void batchQRPivotingSolve<layout_right, layout_right, layout_right>(ParallelManager,double*,int,int,double*,int,int,int,int,int,const int,const bool);
215 template void batchQRPivotingSolve<layout_right, layout_right, layout_left >(ParallelManager,double*,int,int,double*,int,int,int,int,int,const int,const bool);
216 template void batchQRPivotingSolve<layout_right, layout_left , layout_right>(ParallelManager,double*,int,int,double*,int,int,int,int,int,const int,const bool);
217 template void batchQRPivotingSolve<layout_right, layout_left , layout_left >(ParallelManager,double*,int,int,double*,int,int,int,int,int,const int,const bool);
218 template void batchQRPivotingSolve<layout_left , layout_right, layout_right>(ParallelManager,double*,int,int,double*,int,int,int,int,int,const int,const bool);
219 template void batchQRPivotingSolve<layout_left , layout_right, layout_left >(ParallelManager,double*,int,int,double*,int,int,int,int,int,const int,const bool);
220 template void batchQRPivotingSolve<layout_left , layout_left , layout_right>(ParallelManager,double*,int,int,double*,int,int,int,int,int,const int,const bool);
221 template void batchQRPivotingSolve<layout_left , layout_left , layout_left >(ParallelManager,double*,int,int,double*,int,int,int,int,int,const int,const bool);
222 
223 } // GMLS_LinearAlgebra
224 } // Compadre
Kokkos::DefaultExecutionSpace device_execution_space
Kokkos::View< double **, layout_left, Kokkos::MemoryTraits< Kokkos::Unmanaged > > scratch_matrix_left_type
Kokkos::View< double *, Kokkos::MemoryTraits< Kokkos::Unmanaged > > scratch_vector_type
#define TO_GLOBAL(variable)
Kokkos::View< int *, Kokkos::MemoryTraits< Kokkos::Unmanaged > > scratch_local_index_type
Kokkos::View< double **, layout_right, Kokkos::MemoryTraits< Kokkos::Unmanaged > > scratch_matrix_right_type
void setTeamScratchSize(const int level, const int value)
void CallFunctorWithTeamThreadsAndVectors(C functor, const global_index_type batch_size, const int threads_per_team=-1, const int vector_lanes_per_thread=-1) const
Calls a parallel_for parallel_for will break out over loops over teams with each vector lane executin...
KOKKOS_INLINE_FUNCTION int getTeamScratchLevel(const int level) const
template void batchQRPivotingSolve< layout_left, layout_right, layout_right >(ParallelManager, double *, int, int, double *, int, int, int, int, int, const int, const bool)
template void batchQRPivotingSolve< layout_left, layout_left, layout_right >(ParallelManager, double *, int, int, double *, int, int, int, int, int, const int, const bool)
void batchQRPivotingSolve(ParallelManager pm, double *A, int lda, int nda, double *B, int ldb, int ndb, int M, int N, int NRHS, const int num_matrices, const bool implicit_RHS)
Solves a batch of problems with QR+Pivoting.
template void batchQRPivotingSolve< layout_left, layout_right, layout_left >(ParallelManager, double *, int, int, double *, int, int, int, int, int, const int, const bool)
template void batchQRPivotingSolve< layout_left, layout_left, layout_left >(ParallelManager, double *, int, int, double *, int, int, int, int, int, const int, const bool)
template void batchQRPivotingSolve< layout_right, layout_left, layout_right >(ParallelManager, double *, int, int, double *, int, int, int, int, int, const int, const bool)
template void batchQRPivotingSolve< layout_right, layout_right, layout_left >(ParallelManager, double *, int, int, double *, int, int, int, int, int, const int, const bool)
template void batchQRPivotingSolve< layout_right, layout_left, layout_left >(ParallelManager, double *, int, int, double *, int, int, int, int, int, const int, const bool)
template void batchQRPivotingSolve< layout_right, layout_right, layout_right >(ParallelManager, double *, int, int, double *, int, int, int, int, int, const int, const bool)
KOKKOS_INLINE_FUNCTION void operator()(const MemberType &member) const
KOKKOS_INLINE_FUNCTION Functor_TestBatchedTeamVectorSolveUTV(const int M, const int N, const int NRHS, const MatrixViewType_A &a, const MatrixViewType_B &b, const bool implicit_RHS)