|
UQTk: Uncertainty Quantification Toolkit 3.1.5
|
Header for the implementations of Bayesian compressive sensing algorithm. More...
Go to the source code of this file.
Macros | |
| #define | MAX_IT 1000 |
Functions | |
| void | WBCS (Array2D< double > &PHI, Array1D< double > &y, Array1D< double > &sigma2, double eta, Array1D< double > &lambda_init, int adaptive, int optimal, double scale, int verbose, Array1D< double > &weights, Array1D< int > &used, Array1D< double > &errbars, Array1D< double > &basis, Array1D< double > &alpha, Array2D< double > &Sig) |
| Implements weighted version of the original Bayesian Compressive Sensing algorithm. | |
| void | BCS (Array2D< double > &PHI, Array1D< double > &y, double &sigma2, double eta, Array1D< double > &lambda_init, int adaptive, int optimal, double scale, int verbose, Array1D< double > &weights, Array1D< int > &used, Array1D< double > &errbars, Array1D< double > &basis, Array1D< double > &alpha, double &lambda) |
| Essentially same functionality as WBCS, but slightly altered I/O. | |
Header for the implementations of Bayesian compressive sensing algorithm.
| #define MAX_IT 1000 |
| void BCS | ( | Array2D< double > & | PHI, |
| Array1D< double > & | y, | ||
| double & | sigma2, | ||
| double | eta, | ||
| Array1D< double > & | lambda_init, | ||
| int | adaptive, | ||
| int | optimal, | ||
| double | scale, | ||
| int | verbose, | ||
| Array1D< double > & | weights, | ||
| Array1D< int > & | used, | ||
| Array1D< double > & | errbars, | ||
| Array1D< double > & | basis, | ||
| Array1D< double > & | alpha, | ||
| double & | lambda ) |
Essentially same functionality as WBCS, but slightly altered I/O.
| void WBCS | ( | Array2D< double > & | PHI, |
| Array1D< double > & | y, | ||
| Array1D< double > & | sigma2, | ||
| double | eta, | ||
| Array1D< double > & | lambda_init, | ||
| int | adaptive, | ||
| int | optimal, | ||
| double | scale, | ||
| int | verbose, | ||
| Array1D< double > & | weights, | ||
| Array1D< int > & | used, | ||
| Array1D< double > & | errbars, | ||
| Array1D< double > & | basis, | ||
| Array1D< double > & | alpha, | ||
| Array2D< double > & | Sig ) |
Implements weighted version of the original Bayesian Compressive Sensing algorithm.
| [in] | PHI | : design matrix |
| [in] | y | : data vector |
| [in,out] | sigma2 | : initial noise variance (usually var(y)/1e2) : re-estimated on output |
| [in] | eta | : stopping criterion (usually 1e-5) |
| [in] | lambda_init | : regularization weight vector, if empty array, it automatically computes the optimal, uniform weights |
| [in] | adaptive | : generate basis for adaptive CS (usually 0) |
| [in] | optimal | : use the rigorous implementation of adaptive CS (usually 1) |
| [in] | scale | : diagonal loading parameter (usually 0.1) |
| [in] | verbose | : verbosity flag |
| [out] | weights | : sparse weights |
| [out] | used | : the positions of sparse weights |
| [out] | errbars | : one standard deviation around the sparse weights |
| [out] | basis | : if adaptive==1, then this is the next projection vector, see [Ji:2008] |
| [out] | alpha | : estimated sparse hyperparameters (1/gamma), see [Babacan:2010] |
| [out] | Sig | : covariance matrix of the weights |
Implements weighted version of the original Bayesian Compressive Sensing algorithm.