logo

Expression of type ExprTuple

from the theory of proveit.trigonometry

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, a, b, c, r
from proveit.numbers import Exp, Mult, e, i, subtract
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(subtract(Mult(r, Exp(e, Mult(i, a)), c), Mult(r, c, Exp(e, Mult(i, b)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(r \cdot \mathsf{e}^{\mathsf{i} \cdot a} \cdot c\right) - \left(r \cdot c \cdot \mathsf{e}^{\mathsf{i} \cdot b}\right)\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Operationoperator: 2
operands: 3
2Literal
3ExprTuple4, 5
4Operationoperator: 23
operands: 6
5Operationoperator: 7
operand: 10
6ExprTuple14, 9, 15
7Literal
8ExprTuple10
9Operationoperator: 18
operands: 11
10Operationoperator: 23
operands: 12
11ExprTuple21, 13
12ExprTuple14, 15, 16
13Operationoperator: 23
operands: 17
14Variable
15Variable
16Operationoperator: 18
operands: 19
17ExprTuple25, 20
18Literal
19ExprTuple21, 22
20Variable
21Literal
22Operationoperator: 23
operands: 24
23Literal
24ExprTuple25, 26
25Literal
26Variable