logo

Expression of type ExprTuple

from the theory of proveit.trigonometry

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, a, b, c, r
from proveit.numbers import Exp, Mult, Neg, e, i
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Mult(r, Exp(e, Mult(i, a)), c), Neg(Mult(r, c, Exp(e, Mult(i, b)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(r \cdot \mathsf{e}^{\mathsf{i} \cdot a} \cdot c, -\left(r \cdot c \cdot \mathsf{e}^{\mathsf{i} \cdot b}\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 20
operands: 3
2Operationoperator: 4
operand: 7
3ExprTuple11, 6, 12
4Literal
5ExprTuple7
6Operationoperator: 15
operands: 8
7Operationoperator: 20
operands: 9
8ExprTuple18, 10
9ExprTuple11, 12, 13
10Operationoperator: 20
operands: 14
11Variable
12Variable
13Operationoperator: 15
operands: 16
14ExprTuple22, 17
15Literal
16ExprTuple18, 19
17Variable
18Literal
19Operationoperator: 20
operands: 21
20Literal
21ExprTuple22, 23
22Literal
23Variable