logo

Expression of type Abs

from the theory of proveit.trigonometry

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import r, theta
from proveit.numbers import Abs, Exp, Mult, e, i, subtract
In [2]:
# build up the expression from sub-expressions
expr = Abs(subtract(r, Mult(r, Exp(e, Mult(i, theta)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left|r - \left(r \cdot \mathsf{e}^{\mathsf{i} \cdot \theta}\right)\right|
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operand: 3
1Literal
2ExprTuple3
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple11, 6
6Operationoperator: 7
operand: 9
7Literal
8ExprTuple9
9Operationoperator: 17
operands: 10
10ExprTuple11, 12
11Variable
12Operationoperator: 13
operands: 14
13Literal
14ExprTuple15, 16
15Literal
16Operationoperator: 17
operands: 18
17Literal
18ExprTuple19, 20
19Literal
20Variable