logo

Expression of type ExprTuple

from the theory of proveit.trigonometry

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, r, theta
from proveit.numbers import Exp, Mult, e, i, subtract
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(subtract(r, Mult(r, Exp(e, Mult(i, theta)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(r - \left(r \cdot \mathsf{e}^{\mathsf{i} \cdot \theta}\right)\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Operationoperator: 2
operands: 3
2Literal
3ExprTuple9, 4
4Operationoperator: 5
operand: 7
5Literal
6ExprTuple7
7Operationoperator: 15
operands: 8
8ExprTuple9, 10
9Variable
10Operationoperator: 11
operands: 12
11Literal
12ExprTuple13, 14
13Literal
14Operationoperator: 15
operands: 16
15Literal
16ExprTuple17, 18
17Literal
18Variable