| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4*, 5*, 6* | ⊢  |
| : , :  |
1 | theorem | | ⊢  |
| proveit.trigonometry.complex_unit_circle_chord_length |
2 | instantiation | 7, 90, 128 | ⊢  |
| : , :  |
3 | reference | 128 | ⊢  |
4 | instantiation | 8, 90, 9* | ⊢  |
| :  |
5 | instantiation | 85, 10, 11 | ⊢  |
| : , : , :  |
6 | instantiation | 85, 12, 13 | ⊢  |
| : , : , :  |
7 | theorem | | ⊢  |
| proveit.numbers.addition.add_real_closure_bin |
8 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.unit_length_complex_polar_negation |
9 | instantiation | 14, 15 | ⊢  |
| : , :  |
10 | instantiation | 98, 16 | ⊢  |
| : , : , :  |
11 | instantiation | 17, 70 | ⊢  |
| :  |
12 | instantiation | 98, 18 | ⊢  |
| : , : , :  |
13 | instantiation | 85, 19, 20 | ⊢  |
| : , : , :  |
14 | theorem | | ⊢  |
| proveit.logic.equality.equals_reversal |
15 | instantiation | 98, 21 | ⊢  |
| : , : , :  |
16 | instantiation | 104, 22, 23 | ⊢  |
| : , : , :  |
17 | theorem | | ⊢  |
| proveit.numbers.negation.double_negation |
18 | instantiation | 85, 24, 25 | ⊢  |
| : , : , :  |
19 | instantiation | 85, 26, 27 | ⊢  |
| : , : , :  |
20 | instantiation | 28, 46 | ⊢  |
| :  |
21 | instantiation | 85, 29, 30 | ⊢  |
| : , : , :  |
22 | instantiation | 31, 88, 32, 33*, 34* | ⊢  |
| : , :  |
23 | instantiation | 35, 36 | ⊢  |
| :  |
24 | instantiation | 98, 37 | ⊢  |
| : , : , :  |
25 | instantiation | 38, 39, 50, 120, 121, 122, 40*, 41* | ⊢  |
| : , :  |
26 | instantiation | 98, 42 | ⊢  |
| : , : , :  |
27 | instantiation | 43, 44, 45, 46, 47* | ⊢  |
| : , : , :  |
28 | theorem | | ⊢  |
| proveit.numbers.division.frac_one_denom |
29 | instantiation | 48, 117, 139, 124, 118, 119, 120, 121, 112, 122 | ⊢  |
| : , : , : , : , : , : , :  |
30 | instantiation | 61, 124, 49, 117, 50, 118, 112, 120, 121, 122 | ⊢  |
| : , : , : , : , : , :  |
31 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.complex_polar_negation |
32 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
33 | instantiation | 51, 121 | ⊢  |
| :  |
34 | instantiation | 85, 52, 53 | ⊢  |
| : , : , :  |
35 | theorem | | ⊢  |
| proveit.numbers.multiplication.elim_one_left |
36 | instantiation | 54, 101, 55 | ⊢  |
| : , :  |
37 | instantiation | 85, 56, 57 | ⊢  |
| : , : , :  |
38 | theorem | | ⊢  |
| proveit.numbers.absolute_value.abs_prod |
39 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
40 | instantiation | 59, 58 | ⊢  |
| :  |
41 | instantiation | 59, 60 | ⊢  |
| :  |
42 | instantiation | 61, 124, 139, 117, 62, 118, 120, 121, 66 | ⊢  |
| : , : , : , : , : , :  |
43 | theorem | | ⊢  |
| proveit.numbers.division.frac_cancel_left |
44 | instantiation | 137, 64, 63 | ⊢  |
| : , : , :  |
45 | instantiation | 137, 64, 65 | ⊢  |
| : , : , :  |
46 | instantiation | 71, 121, 66 | ⊢  |
| : , :  |
47 | instantiation | 69, 120 | ⊢  |
| :  |
48 | theorem | | ⊢  |
| proveit.numbers.multiplication.leftward_commutation |
49 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
50 | instantiation | 67 | ⊢  |
| : , : , :  |
51 | theorem | | ⊢  |
| proveit.numbers.addition.elim_zero_left |
52 | instantiation | 98, 68 | ⊢  |
| : , : , :  |
53 | instantiation | 69, 70 | ⊢  |
| :  |
54 | theorem | | ⊢  |
| proveit.numbers.exponentiation.exp_complex_closure |
55 | instantiation | 71, 112, 121 | ⊢  |
| : , :  |
56 | instantiation | 72, 117, 139, 124, 118, 73, 76, 121, 74 | ⊢  |
| : , : , : , : , : , :  |
57 | instantiation | 75, 121, 76, 77 | ⊢  |
| : , : , :  |
58 | instantiation | 78, 139 | ⊢  |
| :  |
59 | theorem | | ⊢  |
| proveit.numbers.absolute_value.abs_non_neg_elim |
60 | instantiation | 79, 80 | ⊢  |
| : , :  |
61 | theorem | | ⊢  |
| proveit.numbers.multiplication.association |
62 | instantiation | 126 | ⊢  |
| : , :  |
63 | instantiation | 137, 82, 81 | ⊢  |
| : , : , :  |
64 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
65 | instantiation | 137, 82, 83 | ⊢  |
| : , : , :  |
66 | instantiation | 137, 129, 84 | ⊢  |
| : , : , :  |
67 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
68 | instantiation | 85, 86, 87 | ⊢  |
| : , : , :  |
69 | theorem | | ⊢  |
| proveit.numbers.multiplication.elim_one_right |
70 | instantiation | 137, 129, 88 | ⊢  |
| : , : , :  |
71 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_complex_closure_bin |
72 | theorem | | ⊢  |
| proveit.numbers.addition.disassociation |
73 | instantiation | 126 | ⊢  |
| : , :  |
74 | instantiation | 137, 129, 89 | ⊢  |
| : , : , :  |
75 | theorem | | ⊢  |
| proveit.numbers.addition.subtraction.add_cancel_triple_23 |
76 | instantiation | 137, 129, 90 | ⊢  |
| : , : , :  |
77 | instantiation | 91 | ⊢  |
| :  |
78 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
79 | theorem | | ⊢  |
| proveit.numbers.ordering.relax_less |
80 | instantiation | 92, 134 | ⊢  |
| :  |
81 | instantiation | 137, 94, 93 | ⊢  |
| : , : , :  |
82 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
83 | instantiation | 137, 94, 95 | ⊢  |
| : , : , :  |
84 | instantiation | 137, 96, 97 | ⊢  |
| : , : , :  |
85 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
86 | instantiation | 98, 99 | ⊢  |
| : , : , :  |
87 | instantiation | 100, 101 | ⊢  |
| :  |
88 | instantiation | 137, 131, 102 | ⊢  |
| : , : , :  |
89 | instantiation | 103, 128 | ⊢  |
| :  |
90 | instantiation | 104, 105, 106 | ⊢  |
| : , : , :  |
91 | axiom | | ⊢  |
| proveit.logic.equality.equals_reflexivity |
92 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.positive_if_in_real_pos |
93 | instantiation | 137, 108, 107 | ⊢  |
| : , : , :  |
94 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
95 | instantiation | 137, 108, 109 | ⊢  |
| : , : , :  |
96 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.real_nonneg_within_real |
97 | instantiation | 110, 122 | ⊢  |
| :  |
98 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
99 | instantiation | 111, 112 | ⊢  |
| :  |
100 | theorem | | ⊢  |
| proveit.numbers.exponentiation.exp_zero_eq_one |
101 | instantiation | 137, 129, 113 | ⊢  |
| : , : , :  |
102 | instantiation | 137, 135, 114 | ⊢  |
| : , : , :  |
103 | theorem | | ⊢  |
| proveit.numbers.negation.real_closure |
104 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
105 | instantiation | 125, 115, 130 | ⊢  |
| : , :  |
106 | instantiation | 116, 117, 139, 124, 118, 119, 120, 121, 122 | ⊢  |
| : , : , : , : , : , :  |
107 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
108 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
109 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat1 |
110 | theorem | | ⊢  |
| proveit.numbers.absolute_value.abs_complex_closure |
111 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_zero_right |
112 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
113 | instantiation | 137, 133, 123 | ⊢  |
| : , : , :  |
114 | instantiation | 137, 138, 124 | ⊢  |
| : , : , :  |
115 | instantiation | 125, 127, 128 | ⊢  |
| : , :  |
116 | theorem | | ⊢  |
| proveit.numbers.multiplication.disassociation |
117 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
118 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
119 | instantiation | 126 | ⊢  |
| : , :  |
120 | instantiation | 137, 129, 127 | ⊢  |
| : , : , :  |
121 | instantiation | 137, 129, 128 | ⊢  |
| : , : , :  |
122 | instantiation | 137, 129, 130 | ⊢  |
| : , : , :  |
123 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
124 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
125 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_real_closure_bin |
126 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
127 | instantiation | 137, 131, 132 | ⊢  |
| : , : , :  |
128 | instantiation | 137, 133, 134 | ⊢  |
| : , : , :  |
129 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
130 | assumption | | ⊢  |
131 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
132 | instantiation | 137, 135, 136 | ⊢  |
| : , : , :  |
133 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
134 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
135 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
136 | instantiation | 137, 138, 139 | ⊢  |
| : , : , :  |
137 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
138 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
139 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |