| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4*, 5*, 6* | ⊢ |
| : , : |
1 | theorem | | ⊢ |
| proveit.trigonometry.complex_unit_circle_chord_length |
2 | instantiation | 7, 90, 128 | ⊢ |
| : , : |
3 | reference | 128 | ⊢ |
4 | instantiation | 8, 90, 9* | ⊢ |
| : |
5 | instantiation | 85, 10, 11 | ⊢ |
| : , : , : |
6 | instantiation | 85, 12, 13 | ⊢ |
| : , : , : |
7 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
8 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.unit_length_complex_polar_negation |
9 | instantiation | 14, 15 | ⊢ |
| : , : |
10 | instantiation | 98, 16 | ⊢ |
| : , : , : |
11 | instantiation | 17, 70 | ⊢ |
| : |
12 | instantiation | 98, 18 | ⊢ |
| : , : , : |
13 | instantiation | 85, 19, 20 | ⊢ |
| : , : , : |
14 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
15 | instantiation | 98, 21 | ⊢ |
| : , : , : |
16 | instantiation | 104, 22, 23 | ⊢ |
| : , : , : |
17 | theorem | | ⊢ |
| proveit.numbers.negation.double_negation |
18 | instantiation | 85, 24, 25 | ⊢ |
| : , : , : |
19 | instantiation | 85, 26, 27 | ⊢ |
| : , : , : |
20 | instantiation | 28, 46 | ⊢ |
| : |
21 | instantiation | 85, 29, 30 | ⊢ |
| : , : , : |
22 | instantiation | 31, 88, 32, 33*, 34* | ⊢ |
| : , : |
23 | instantiation | 35, 36 | ⊢ |
| : |
24 | instantiation | 98, 37 | ⊢ |
| : , : , : |
25 | instantiation | 38, 39, 50, 120, 121, 122, 40*, 41* | ⊢ |
| : , : |
26 | instantiation | 98, 42 | ⊢ |
| : , : , : |
27 | instantiation | 43, 44, 45, 46, 47* | ⊢ |
| : , : , : |
28 | theorem | | ⊢ |
| proveit.numbers.division.frac_one_denom |
29 | instantiation | 48, 117, 139, 124, 118, 119, 120, 121, 112, 122 | ⊢ |
| : , : , : , : , : , : , : |
30 | instantiation | 61, 124, 49, 117, 50, 118, 112, 120, 121, 122 | ⊢ |
| : , : , : , : , : , : |
31 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.complex_polar_negation |
32 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
33 | instantiation | 51, 121 | ⊢ |
| : |
34 | instantiation | 85, 52, 53 | ⊢ |
| : , : , : |
35 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
36 | instantiation | 54, 101, 55 | ⊢ |
| : , : |
37 | instantiation | 85, 56, 57 | ⊢ |
| : , : , : |
38 | theorem | | ⊢ |
| proveit.numbers.absolute_value.abs_prod |
39 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
40 | instantiation | 59, 58 | ⊢ |
| : |
41 | instantiation | 59, 60 | ⊢ |
| : |
42 | instantiation | 61, 124, 139, 117, 62, 118, 120, 121, 66 | ⊢ |
| : , : , : , : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.division.frac_cancel_left |
44 | instantiation | 137, 64, 63 | ⊢ |
| : , : , : |
45 | instantiation | 137, 64, 65 | ⊢ |
| : , : , : |
46 | instantiation | 71, 121, 66 | ⊢ |
| : , : |
47 | instantiation | 69, 120 | ⊢ |
| : |
48 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
49 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
50 | instantiation | 67 | ⊢ |
| : , : , : |
51 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
52 | instantiation | 98, 68 | ⊢ |
| : , : , : |
53 | instantiation | 69, 70 | ⊢ |
| : |
54 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
55 | instantiation | 71, 112, 121 | ⊢ |
| : , : |
56 | instantiation | 72, 117, 139, 124, 118, 73, 76, 121, 74 | ⊢ |
| : , : , : , : , : , : |
57 | instantiation | 75, 121, 76, 77 | ⊢ |
| : , : , : |
58 | instantiation | 78, 139 | ⊢ |
| : |
59 | theorem | | ⊢ |
| proveit.numbers.absolute_value.abs_non_neg_elim |
60 | instantiation | 79, 80 | ⊢ |
| : , : |
61 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
62 | instantiation | 126 | ⊢ |
| : , : |
63 | instantiation | 137, 82, 81 | ⊢ |
| : , : , : |
64 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
65 | instantiation | 137, 82, 83 | ⊢ |
| : , : , : |
66 | instantiation | 137, 129, 84 | ⊢ |
| : , : , : |
67 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
68 | instantiation | 85, 86, 87 | ⊢ |
| : , : , : |
69 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
70 | instantiation | 137, 129, 88 | ⊢ |
| : , : , : |
71 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
72 | theorem | | ⊢ |
| proveit.numbers.addition.disassociation |
73 | instantiation | 126 | ⊢ |
| : , : |
74 | instantiation | 137, 129, 89 | ⊢ |
| : , : , : |
75 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_23 |
76 | instantiation | 137, 129, 90 | ⊢ |
| : , : , : |
77 | instantiation | 91 | ⊢ |
| : |
78 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
79 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
80 | instantiation | 92, 134 | ⊢ |
| : |
81 | instantiation | 137, 94, 93 | ⊢ |
| : , : , : |
82 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
83 | instantiation | 137, 94, 95 | ⊢ |
| : , : , : |
84 | instantiation | 137, 96, 97 | ⊢ |
| : , : , : |
85 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
86 | instantiation | 98, 99 | ⊢ |
| : , : , : |
87 | instantiation | 100, 101 | ⊢ |
| : |
88 | instantiation | 137, 131, 102 | ⊢ |
| : , : , : |
89 | instantiation | 103, 128 | ⊢ |
| : |
90 | instantiation | 104, 105, 106 | ⊢ |
| : , : , : |
91 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
92 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.positive_if_in_real_pos |
93 | instantiation | 137, 108, 107 | ⊢ |
| : , : , : |
94 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
95 | instantiation | 137, 108, 109 | ⊢ |
| : , : , : |
96 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_nonneg_within_real |
97 | instantiation | 110, 122 | ⊢ |
| : |
98 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
99 | instantiation | 111, 112 | ⊢ |
| : |
100 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_zero_eq_one |
101 | instantiation | 137, 129, 113 | ⊢ |
| : , : , : |
102 | instantiation | 137, 135, 114 | ⊢ |
| : , : , : |
103 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
104 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
105 | instantiation | 125, 115, 130 | ⊢ |
| : , : |
106 | instantiation | 116, 117, 139, 124, 118, 119, 120, 121, 122 | ⊢ |
| : , : , : , : , : , : |
107 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
108 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
109 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
110 | theorem | | ⊢ |
| proveit.numbers.absolute_value.abs_complex_closure |
111 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_zero_right |
112 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
113 | instantiation | 137, 133, 123 | ⊢ |
| : , : , : |
114 | instantiation | 137, 138, 124 | ⊢ |
| : , : , : |
115 | instantiation | 125, 127, 128 | ⊢ |
| : , : |
116 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
117 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
118 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
119 | instantiation | 126 | ⊢ |
| : , : |
120 | instantiation | 137, 129, 127 | ⊢ |
| : , : , : |
121 | instantiation | 137, 129, 128 | ⊢ |
| : , : , : |
122 | instantiation | 137, 129, 130 | ⊢ |
| : , : , : |
123 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
124 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
125 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
126 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
127 | instantiation | 137, 131, 132 | ⊢ |
| : , : , : |
128 | instantiation | 137, 133, 134 | ⊢ |
| : , : , : |
129 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
130 | assumption | | ⊢ |
131 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
132 | instantiation | 137, 135, 136 | ⊢ |
| : , : , : |
133 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
134 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
135 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
136 | instantiation | 137, 138, 139 | ⊢ |
| : , : , : |
137 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
138 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
139 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |