| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | reference | 25 | ⊢ |
2 | instantiation | 18, 4 | ⊢ |
| : , : , : |
3 | instantiation | 25, 5, 6 | ⊢ |
| : , : , : |
4 | instantiation | 25, 7, 8 | ⊢ |
| : , : , : |
5 | instantiation | 25, 9, 10 | ⊢ |
| : , : , : |
6 | instantiation | 11, 23 | ⊢ |
| : |
7 | instantiation | 18, 12 | ⊢ |
| : , : , : |
8 | instantiation | 13, 14, 15, 76, 77, 78, 16*, 17* | ⊢ |
| : , : |
9 | instantiation | 18, 19 | ⊢ |
| : , : , : |
10 | instantiation | 20, 21, 22, 23, 24* | ⊢ |
| : , : , : |
11 | theorem | | ⊢ |
| proveit.numbers.division.frac_one_denom |
12 | instantiation | 25, 26, 27 | ⊢ |
| : , : , : |
13 | theorem | | ⊢ |
| proveit.numbers.absolute_value.abs_prod |
14 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
15 | instantiation | 28 | ⊢ |
| : , : , : |
16 | instantiation | 30, 29 | ⊢ |
| : |
17 | instantiation | 30, 31 | ⊢ |
| : |
18 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
19 | instantiation | 32, 73, 93, 72, 33, 74, 76, 77, 38 | ⊢ |
| : , : , : , : , : , : |
20 | theorem | | ⊢ |
| proveit.numbers.division.frac_cancel_left |
21 | instantiation | 91, 35, 34 | ⊢ |
| : , : , : |
22 | instantiation | 91, 35, 36 | ⊢ |
| : , : , : |
23 | instantiation | 37, 77, 38 | ⊢ |
| : , : |
24 | instantiation | 39, 76 | ⊢ |
| : |
25 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
26 | instantiation | 40, 72, 93, 73, 74, 41, 44, 77, 42 | ⊢ |
| : , : , : , : , : , : |
27 | instantiation | 43, 77, 44, 45 | ⊢ |
| : , : , : |
28 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
29 | instantiation | 46, 93 | ⊢ |
| : |
30 | theorem | | ⊢ |
| proveit.numbers.absolute_value.abs_non_neg_elim |
31 | instantiation | 47, 48 | ⊢ |
| : , : |
32 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
33 | instantiation | 80 | ⊢ |
| : , : |
34 | instantiation | 91, 50, 49 | ⊢ |
| : , : , : |
35 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
36 | instantiation | 91, 50, 51 | ⊢ |
| : , : , : |
37 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
38 | instantiation | 91, 83, 52 | ⊢ |
| : , : , : |
39 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
40 | theorem | | ⊢ |
| proveit.numbers.addition.disassociation |
41 | instantiation | 80 | ⊢ |
| : , : |
42 | instantiation | 91, 83, 53 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_23 |
44 | instantiation | 91, 83, 54 | ⊢ |
| : , : , : |
45 | instantiation | 55 | ⊢ |
| : |
46 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
47 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
48 | instantiation | 56, 88 | ⊢ |
| : |
49 | instantiation | 91, 58, 57 | ⊢ |
| : , : , : |
50 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
51 | instantiation | 91, 58, 59 | ⊢ |
| : , : , : |
52 | instantiation | 91, 60, 61 | ⊢ |
| : , : , : |
53 | instantiation | 62, 82 | ⊢ |
| : |
54 | instantiation | 63, 64, 65 | ⊢ |
| : , : , : |
55 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
56 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.positive_if_in_real_pos |
57 | instantiation | 91, 67, 66 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
59 | instantiation | 91, 67, 68 | ⊢ |
| : , : , : |
60 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_nonneg_within_real |
61 | instantiation | 69, 78 | ⊢ |
| : |
62 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
63 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
64 | instantiation | 79, 70, 84 | ⊢ |
| : , : |
65 | instantiation | 71, 72, 93, 73, 74, 75, 76, 77, 78 | ⊢ |
| : , : , : , : , : , : |
66 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
67 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
69 | theorem | | ⊢ |
| proveit.numbers.absolute_value.abs_complex_closure |
70 | instantiation | 79, 81, 82 | ⊢ |
| : , : |
71 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
72 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
73 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
74 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
75 | instantiation | 80 | ⊢ |
| : , : |
76 | instantiation | 91, 83, 81 | ⊢ |
| : , : , : |
77 | instantiation | 91, 83, 82 | ⊢ |
| : , : , : |
78 | instantiation | 91, 83, 84 | ⊢ |
| : , : , : |
79 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
80 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
81 | instantiation | 91, 85, 86 | ⊢ |
| : , : , : |
82 | instantiation | 91, 87, 88 | ⊢ |
| : , : , : |
83 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
84 | assumption | | ⊢ |
85 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
86 | instantiation | 91, 89, 90 | ⊢ |
| : , : , : |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
88 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
89 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
90 | instantiation | 91, 92, 93 | ⊢ |
| : , : , : |
91 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
92 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
93 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |