\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\qin{A_{1} {\otimes} A_{2} {\otimes} \ldots {\otimes} A_{m}~\mbox{part}~N_{1 - 1} + 1~\mbox{on}~\{1~\ldotp \ldotp~N_{m}\}} & \qw \\
\qin{A_{1} {\otimes} A_{2} {\otimes} \ldots {\otimes} A_{m}~\mbox{part}~N_{1 - 1} + 2~\mbox{on}~\{1~\ldotp \ldotp~N_{m}\}} & \qw \\
\qin{\vdots} & \qw \\
\qin{A_{1} {\otimes} A_{2} {\otimes} \ldots {\otimes} A_{m}~\mbox{part}~N_{1}~\mbox{on}~\{1~\ldotp \ldotp~N_{m}\}} & \qw \\
\qin{A_{1} {\otimes} A_{2} {\otimes} \ldots {\otimes} A_{m}~\mbox{part}~N_{2 - 1} + 1~\mbox{on}~\{1~\ldotp \ldotp~N_{m}\}} & \qw \\
\qin{A_{1} {\otimes} A_{2} {\otimes} \ldots {\otimes} A_{m}~\mbox{part}~N_{2 - 1} + 2~\mbox{on}~\{1~\ldotp \ldotp~N_{m}\}} & \qw \\
\qin{\vdots} & \qw \\
\qin{A_{1} {\otimes} A_{2} {\otimes} \ldots {\otimes} A_{m}~\mbox{part}~N_{2}~\mbox{on}~\{1~\ldotp \ldotp~N_{m}\}} & \qw \\
\qin{\begin{array}{c}\vdots\\ \vdots\end{array}} & \qw \\
\qin{A_{1} {\otimes} A_{2} {\otimes} \ldots {\otimes} A_{m}~\mbox{part}~N_{m - 1} + 1~\mbox{on}~\{1~\ldotp \ldotp~N_{m}\}} & \qw \\
\qin{A_{1} {\otimes} A_{2} {\otimes} \ldots {\otimes} A_{m}~\mbox{part}~N_{m - 1} + 2~\mbox{on}~\{1~\ldotp \ldotp~N_{m}\}} & \qw \\
\qin{\vdots} & \qw \\
\qin{A_{1} {\otimes} A_{2} {\otimes} \ldots {\otimes} A_{m}~\mbox{part}~N_{m}~\mbox{on}~\{1~\ldotp \ldotp~N_{m}\}} & \qw
} \end{array}