logo

Expression of type NamedExprs

from the theory of proveit.physics.quantum.circuits

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import NamedExprs, Variable
from proveit.core_expr_types import A_1_to_m
from proveit.linear_algebra import TensorProd
In [2]:
# build up the expression from sub-expressions
expr = NamedExprs(("state", TensorProd(A_1_to_m)), ("part", Variable("_b", latex_format = r"{_{-}b}")))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{ \begin{array}{l}
{\rm state}: \left(A_{1} {\otimes}  A_{2} {\otimes}  \ldots {\otimes}  A_{m}\right)\\
{\rm part}: {_{-}b}\\
\end{array} \right\}

In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0NamedExprsstate: 1
part: 2
1Operationoperator: 3
operands: 4
2Variable
3Literal
4ExprTuple5
5ExprRangelambda_map: 6
start_index: 7
end_index: 8
6Lambdaparameter: 12
body: 9
7Literal
8Variable
9IndexedVarvariable: 10
index: 12
10Variable
11ExprTuple12
12Variable