import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, B, C, D, ExprRange, ExprTuple, Function, IndexedVar, Q, Variable, alpha, beta, c, delta, gamma, j, m, n
from proveit.core_expr_types import Q__b_1_to_j, b_1_to_j, f__b_1_to_j
from proveit.linear_algebra import MatrixSpace
from proveit.logic import CartExp, Forall, InSet
from proveit.numbers import Complex, NaturalPos, one
from proveit.physics.quantum import ket_psi, ket_varphi
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = MatrixSpace(field = Complex, rows = n, columns = m)
expr = ExprTuple(InSet(alpha, Complex), InSet(beta, Complex), InSet(gamma, Complex), InSet(delta, Complex), InSet(j, NaturalPos), InSet(m, NaturalPos), InSet(n, NaturalPos), InSet(ket_psi, CartExp(Complex, m)), InSet(A, sub_expr2), InSet(B, sub_expr2), InSet(C, sub_expr2), InSet(D, MatrixSpace(field = Complex, rows = m, columns = n)), InSet(ket_varphi, CartExp(Complex, n)), Forall(instance_param_or_params = [b_1_to_j], instance_expr = InSet(f__b_1_to_j, sub_expr2), condition = Q__b_1_to_j), Function(Q, [ExprRange(sub_expr1, IndexedVar(c, sub_expr1), one, j)]))
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
stored_expr.style_options()
# display the expression information
stored_expr.expr_info()