logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, m, n
from proveit.core_expr_types import f__b_1_to_j
from proveit.linear_algebra import MatrixSpace
from proveit.numbers import Complex
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(f__b_1_to_j, MatrixSpace(field = Complex, rows = n, columns = m))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(f\left(b_{1}, b_{2}, \ldots, b_{j}\right), \mathbb{C}^{n \times m}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operands: 4
2Operationoperator: 5
operands: 6
3Variable
4ExprTuple7
5Literal
6NamedExprsfield: 8
rows: 9
columns: 10
7ExprRangelambda_map: 11
start_index: 12
end_index: 13
8Literal
9Variable
10Variable
11Lambdaparameter: 17
body: 14
12Literal
13Variable
14IndexedVarvariable: 15
index: 17
15Variable
16ExprTuple17
17Variable