logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, b
from proveit.logic import Equals, InSet
from proveit.numbers import Add, Integer, frac
from proveit.physics.quantum.QPE import _delta_b, _phase, _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda(b, Conditional(Equals(_phase, Add(frac(b, _two_pow_t), _delta_b)), InSet(b, Integer))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(b \mapsto \left\{\varphi = \left(\frac{b}{2^{t}} + \delta_{b}\right) \textrm{ if } b \in \mathbb{Z}\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 21
body: 2
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 10
7Literal
8ExprTuple21, 11
9Literal
10Operationoperator: 12
operands: 13
11Literal
12Literal
13ExprTuple14, 15
14Operationoperator: 16
operands: 17
15Operationoperator: 18
operand: 21
16Literal
17ExprTuple21, 20
18Literal
19ExprTuple21
20Operationoperator: 22
operands: 23
21Variable
22Literal
23ExprTuple24, 25
24Literal
25Literal