logo

Expression of type Lambda

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, b
from proveit.logic import Equals, InSet
from proveit.numbers import Add, Integer, frac
from proveit.physics.quantum.QPE import _delta_b, _phase, _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = Lambda(b, Conditional(Equals(_phase, Add(frac(b, _two_pow_t), _delta_b)), InSet(b, Integer)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
b \mapsto \left\{\varphi = \left(\frac{b}{2^{t}} + \delta_{b}\right) \textrm{ if } b \in \mathbb{Z}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 20
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 4
operands: 5
3Operationoperator: 6
operands: 7
4Literal
5ExprTuple8, 9
6Literal
7ExprTuple20, 10
8Literal
9Operationoperator: 11
operands: 12
10Literal
11Literal
12ExprTuple13, 14
13Operationoperator: 15
operands: 16
14Operationoperator: 17
operand: 20
15Literal
16ExprTuple20, 19
17Literal
18ExprTuple20
19Operationoperator: 21
operands: 22
20Variable
21Literal
22ExprTuple23, 24
23Literal
24Literal