logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, k, m
from proveit.numbers import Exp, Mult, Sum, e, frac, i, one, pi, subtract, two
from proveit.physics.quantum.QPE import _alpha_m_mod_two_pow_t, _m_domain, _phase, _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(_alpha_m_mod_two_pow_t, Mult(frac(one, _two_pow_t), Sum(index_or_indices = [k], summand = Exp(Exp(e, Mult(two, pi, i, subtract(_phase, frac(m, _two_pow_t)))), k), domain = _m_domain)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\alpha_{m ~\textup{mod}~ 2^{t}}, \frac{1}{2^{t}} \cdot \left(\sum_{k = 0}^{2^{t} - 1} (\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \left(\varphi - \frac{m}{2^{t}}\right)})^{k}\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operand: 6
2Operationoperator: 31
operands: 5
3Literal
4ExprTuple6
5ExprTuple7, 8
6Operationoperator: 9
operands: 48
7Operationoperator: 47
operands: 10
8Operationoperator: 11
operand: 13
9Literal
10ExprTuple43, 50
11Literal
12ExprTuple13
13Lambdaparameter: 22
body: 15
14ExprTuple22
15Conditionalvalue: 16
condition: 17
16Operationoperator: 51
operands: 18
17Operationoperator: 19
operands: 20
18ExprTuple21, 22
19Literal
20ExprTuple22, 23
21Operationoperator: 51
operands: 24
22Variable
23Operationoperator: 25
operands: 26
24ExprTuple27, 28
25Literal
26ExprTuple29, 30
27Literal
28Operationoperator: 31
operands: 32
29Literal
30Operationoperator: 38
operands: 33
31Literal
32ExprTuple53, 34, 35, 36
33ExprTuple50, 37
34Literal
35Literal
36Operationoperator: 38
operands: 39
37Operationoperator: 44
operand: 43
38Literal
39ExprTuple41, 42
40ExprTuple43
41Literal
42Operationoperator: 44
operand: 46
43Literal
44Literal
45ExprTuple46
46Operationoperator: 47
operands: 48
47Literal
48ExprTuple49, 50
49Variable
50Operationoperator: 51
operands: 52
51Literal
52ExprTuple53, 54
53Literal
54Literal