logo

Expression of type Exp

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import m
from proveit.numbers import Exp, Mult, e, frac, i, pi, subtract, two
from proveit.physics.quantum.QPE import _phase, _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = Exp(e, Mult(two, pi, i, subtract(_phase, frac(m, _two_pow_t))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \left(\varphi - \frac{m}{2^{t}}\right)}
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 20
operands: 1
1ExprTuple2, 3
2Literal
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple22, 6, 7, 8
6Literal
7Literal
8Operationoperator: 9
operands: 10
9Literal
10ExprTuple11, 12
11Literal
12Operationoperator: 13
operand: 15
13Literal
14ExprTuple15
15Operationoperator: 16
operands: 17
16Literal
17ExprTuple18, 19
18Variable
19Operationoperator: 20
operands: 21
20Literal
21ExprTuple22, 23
22Literal
23Literal