# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(t, one)
sub_expr3 = Add(t, s)
sub_expr4 = Interval(sub_expr2, sub_expr3)
sub_expr5 = MultiQubitElem(element = Gate(operation = QPE(U, t), part = sub_expr1), targets = Interval(one, sub_expr3))
expr = Forall(instance_param_or_params = [s, n], instance_expr = Forall(instance_param_or_params = [U, var_ket_u, phase], instance_expr = Forall(instance_param_or_params = [t], instance_expr = greater_eq(ProbOfAll(instance_param_or_params = [m], instance_element = Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, Input(state = ket_plus), one, t), ExprRange(sub_expr1, MultiQubitElem(element = Input(state = var_ket_u, part = sub_expr1), targets = sub_expr4), one, s)], [ExprRange(sub_expr1, sub_expr5, one, t), ExprRange(sub_expr1, sub_expr5, sub_expr2, sub_expr3)], [ExprRange(sub_expr1, Measure(basis = Z), one, t), ExprRange(sub_expr1, Gate(operation = I).with_implicit_representation(), one, s)], [ExprRange(sub_expr1, MultiQubitElem(element = Output(state = NumKet(m, t), part = sub_expr1), targets = Interval(one, t)), one, t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = var_ket_u, part = sub_expr1), targets = sub_expr4), one, s)])), domain = Interval(zero, subtract(two_pow_t, one)), condition = LessEq(ModAbs(subtract(frac(m, two_pow_t), phase), one), Exp(two, Neg(n)))).with_wrapping(), subtract(one, eps)), domain = NaturalPos, condition = greater_eq(t, Add(n, Ceil(Log(two, Add(two, frac(one, Mult(two, eps)))))))).with_wrapping(), domains = [Unitary(two_pow_s), s_ket_domain, Real], conditions = [InSet(phase, IntervalCO(zero, one)), normalized_var_ket_u, Equals(MatrixMult(U, var_ket_u), ScalarMult(Exp(e, Mult(two, pi, i, phase)), var_ket_u))]).with_wrapping(), domain = NaturalPos, condition = greater_eq(n, two)).with_wrapping()