logo

Expression of type And

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import U
from proveit.linear_algebra import MatrixMult, ScalarMult, Unitary
from proveit.logic import And, Equals, InSet
from proveit.numbers import Exp, IntervalCO, Mult, Real, e, i, one, pi, two, zero
from proveit.physics.quantum import normalized_var_ket_u, var_ket_u
from proveit.physics.quantum.QPE import phase, s_ket_domain, two_pow_s
In [2]:
# build up the expression from sub-expressions
expr = And(InSet(U, Unitary(two_pow_s)), InSet(var_ket_u, s_ket_domain), InSet(phase, Real), InSet(phase, IntervalCO(zero, one)), normalized_var_ket_u, Equals(MatrixMult(U, var_ket_u), ScalarMult(Exp(e, Mult(two, pi, i, phase)), var_ket_u)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(U \in \textrm{U}\left(2^{s}\right)\right) \land \left(\lvert u \rangle \in \mathbb{C}^{2^{s}}\right) \land \left(\varphi \in \mathbb{R}\right) \land \left(\varphi \in \left[0,1\right)\right) \land \left(\left \|\lvert u \rangle\right \| = 1\right) \land \left(\left(U \thinspace \lvert u \rangle\right) = \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \varphi} \cdot \lvert u \rangle\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4, 5, 6, 7, 8
3Operationoperator: 12
operands: 9
4Operationoperator: 12
operands: 10
5Operationoperator: 12
operands: 11
6Operationoperator: 12
operands: 13
7Operationoperator: 15
operands: 14
8Operationoperator: 15
operands: 16
9ExprTuple40, 17
10ExprTuple42, 18
11ExprTuple54, 19
12Literal
13ExprTuple54, 20
14ExprTuple21, 39
15Literal
16ExprTuple22, 23
17Operationoperator: 24
operand: 37
18Operationoperator: 26
operands: 27
19Literal
20Operationoperator: 28
operands: 29
21Operationoperator: 30
operand: 42
22Operationoperator: 32
operands: 33
23Operationoperator: 34
operands: 35
24Literal
25ExprTuple37
26Literal
27ExprTuple36, 37
28Literal
29ExprTuple38, 39
30Literal
31ExprTuple42
32Literal
33ExprTuple40, 42
34Literal
35ExprTuple41, 42
36Literal
37Operationoperator: 44
operands: 43
38Literal
39Literal
40Variable
41Operationoperator: 44
operands: 45
42Variable
43ExprTuple51, 46
44Literal
45ExprTuple47, 48
46Variable
47Literal
48Operationoperator: 49
operands: 50
49Literal
50ExprTuple51, 52, 53, 54
51Literal
52Literal
53Literal
54Variable