logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.numbers import Exp, Mult, four, frac, one, subtract, two
from proveit.physics.quantum.QPE import _n, _t
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(frac(one, Mult(four, Exp(subtract(Exp(two, subtract(_t, _n)), one), two))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\frac{1}{4 \cdot \left(2^{t - n} - 1\right)^{2}}\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Operationoperator: 2
operands: 3
2Literal
3ExprTuple19, 4
4Operationoperator: 5
operands: 6
5Literal
6ExprTuple7, 8
7Literal
8Operationoperator: 14
operands: 9
9ExprTuple10, 17
10Operationoperator: 20
operands: 11
11ExprTuple12, 13
12Operationoperator: 14
operands: 15
13Operationoperator: 24
operand: 19
14Literal
15ExprTuple17, 18
16ExprTuple19
17Literal
18Operationoperator: 20
operands: 21
19Literal
20Literal
21ExprTuple22, 23
22Literal
23Operationoperator: 24
operand: 26
24Literal
25ExprTuple26
26Literal