logo

Expression of type Exp

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit.numbers import Exp, one, subtract, two
from proveit.physics.quantum.QPE import _n, _t
In [2]:
# build up the expression from sub-expressions
expr = Exp(subtract(Exp(two, subtract(_t, _n)), one), two)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(2^{t - n} - 1\right)^{2}
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 6
operands: 1
1ExprTuple2, 9
2Operationoperator: 12
operands: 3
3ExprTuple4, 5
4Operationoperator: 6
operands: 7
5Operationoperator: 16
operand: 11
6Literal
7ExprTuple9, 10
8ExprTuple11
9Literal
10Operationoperator: 12
operands: 13
11Literal
12Literal
13ExprTuple14, 15
14Literal
15Operationoperator: 16
operand: 18
16Literal
17ExprTuple18
18Literal