logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, m
from proveit.logic import InSet
from proveit.numbers import Complex
from proveit.physics.quantum.QPE import _alpha_m, _m_domain
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda(m, Conditional(InSet(_alpha_m, Complex), InSet(m, _m_domain))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(m \mapsto \left\{\alpha_{m} \in \mathbb{C} \textrm{ if } m \in \{0~\ldotp \ldotp~2^{t} - 1\}\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 15
body: 2
2Conditionalvalue: 3
condition: 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9
6Literal
7ExprTuple15, 10
8Operationoperator: 11
operand: 15
9Literal
10Operationoperator: 13
operands: 14
11Literal
12ExprTuple15
13Literal
14ExprTuple16, 17
15Variable
16Literal
17Operationoperator: 18
operands: 19
18Literal
19ExprTuple20, 21
20Operationoperator: 22
operands: 23
21Operationoperator: 24
operand: 28
22Literal
23ExprTuple26, 27
24Literal
25ExprTuple28
26Literal
27Literal
28Literal