logo

Expression of type Lambda

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, m
from proveit.logic import InSet
from proveit.numbers import Complex
from proveit.physics.quantum.QPE import _alpha_m, _m_domain
In [2]:
# build up the expression from sub-expressions
expr = Lambda(m, Conditional(InSet(_alpha_m, Complex), InSet(m, _m_domain)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
m \mapsto \left\{\alpha_{m} \in \mathbb{C} \textrm{ if } m \in \{0~\ldotp \ldotp~2^{t} - 1\}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 14
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 5
operands: 4
3Operationoperator: 5
operands: 6
4ExprTuple7, 8
5Literal
6ExprTuple14, 9
7Operationoperator: 10
operand: 14
8Literal
9Operationoperator: 12
operands: 13
10Literal
11ExprTuple14
12Literal
13ExprTuple15, 16
14Variable
15Literal
16Operationoperator: 17
operands: 18
17Literal
18ExprTuple19, 20
19Operationoperator: 21
operands: 22
20Operationoperator: 23
operand: 27
21Literal
22ExprTuple25, 26
23Literal
24ExprTuple27
25Literal
26Literal
27Literal