logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.physics.quantum.QPE import _neg_domain, _pos_domain
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(_neg_domain, _pos_domain)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\{-2^{t - 1} + 1~\ldotp \ldotp~-\left(e + 1\right)\}, \{e + 1~\ldotp \ldotp~2^{t - 1}\}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple6, 7
4Literal
5ExprTuple11, 14
6Operationoperator: 20
operands: 8
7Operationoperator: 24
operand: 11
8ExprTuple10, 26
9ExprTuple11
10Operationoperator: 24
operand: 14
11Operationoperator: 20
operands: 13
12ExprTuple14
13ExprTuple15, 26
14Operationoperator: 16
operands: 17
15Variable
16Literal
17ExprTuple18, 19
18Literal
19Operationoperator: 20
operands: 21
20Literal
21ExprTuple22, 23
22Literal
23Operationoperator: 24
operand: 26
24Literal
25ExprTuple26
26Literal