logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable, t
from proveit.linear_algebra import ScalarMult, TensorProd, VecAdd
from proveit.logic import Equals
from proveit.numbers import Add, Exp, Mult, Neg, e, frac, i, one, pi, sqrt, two, zero
from proveit.physics.quantum import ket0, ket1
from proveit.physics.quantum.QPE import _phase, _psi_t_ket
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
expr = Equals(_psi_t_ket, TensorProd(ExprRange(sub_expr1, ScalarMult(frac(one, sqrt(two)), VecAdd(ket0, ScalarMult(Exp(e, Mult(two, pi, i, Exp(two, Neg(sub_expr1)), _phase)), ket1))), Add(Neg(t), one), zero).with_decreasing_order()))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\lvert \psi_{t} \rangle = \left(\left(\frac{1}{\sqrt{2}} \cdot \left(\lvert 0 \rangle + \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot 2^{t - 1} \cdot \varphi} \cdot \lvert 1 \rangle\right)\right)\right) {\otimes}  \left(\frac{1}{\sqrt{2}} \cdot \left(\lvert 0 \rangle + \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot 2^{t - 2} \cdot \varphi} \cdot \lvert 1 \rangle\right)\right)\right) {\otimes}  \ldots {\otimes}  \left(\frac{1}{\sqrt{2}} \cdot \left(\lvert 0 \rangle + \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot 2^{0} \cdot \varphi} \cdot \lvert 1 \rangle\right)\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operand: 22
4Operationoperator: 6
operands: 7
5Literal
6Literal
7ExprTuple8
8ExprRangelambda_map: 9
start_index: 10
end_index: 31
9Lambdaparameter: 54
body: 11
10Operationoperator: 12
operands: 13
11Operationoperator: 28
operands: 14
12Literal
13ExprTuple15, 41
14ExprTuple16, 17
15Operationoperator: 52
operand: 22
16Operationoperator: 34
operands: 19
17Operationoperator: 20
operands: 21
18ExprTuple22
19ExprTuple41, 23
20Literal
21ExprTuple24, 25
22Variable
23Operationoperator: 48
operands: 26
24Operationoperator: 37
operand: 31
25Operationoperator: 28
operands: 29
26ExprTuple50, 30
27ExprTuple31
28Literal
29ExprTuple32, 33
30Operationoperator: 34
operands: 35
31Literal
32Operationoperator: 48
operands: 36
33Operationoperator: 37
operand: 41
34Literal
35ExprTuple41, 50
36ExprTuple39, 40
37Literal
38ExprTuple41
39Literal
40Operationoperator: 42
operands: 43
41Literal
42Literal
43ExprTuple50, 44, 45, 46, 47
44Literal
45Literal
46Operationoperator: 48
operands: 49
47Literal
48Literal
49ExprTuple50, 51
50Literal
51Operationoperator: 52
operand: 54
52Literal
53ExprTuple54
54Variable