logo

Expression of type TensorProd

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable, t
from proveit.linear_algebra import ScalarMult, TensorProd, VecAdd
from proveit.numbers import Add, Exp, Mult, Neg, e, frac, i, one, pi, sqrt, two, zero
from proveit.physics.quantum import ket0, ket1
from proveit.physics.quantum.QPE import _phase
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
expr = TensorProd(ExprRange(sub_expr1, ScalarMult(frac(one, sqrt(two)), VecAdd(ket0, ScalarMult(Exp(e, Mult(two, pi, i, Exp(two, Neg(sub_expr1)), _phase)), ket1))), Add(Neg(t), one), zero).with_decreasing_order())
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\frac{1}{\sqrt{2}} \cdot \left(\lvert 0 \rangle + \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot 2^{t - 1} \cdot \varphi} \cdot \lvert 1 \rangle\right)\right)\right) {\otimes}  \left(\frac{1}{\sqrt{2}} \cdot \left(\lvert 0 \rangle + \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot 2^{t - 2} \cdot \varphi} \cdot \lvert 1 \rangle\right)\right)\right) {\otimes}  \ldots {\otimes}  \left(\frac{1}{\sqrt{2}} \cdot \left(\lvert 0 \rangle + \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot 2^{0} \cdot \varphi} \cdot \lvert 1 \rangle\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3
3ExprRangelambda_map: 4
start_index: 5
end_index: 26
4Lambdaparameter: 49
body: 6
5Operationoperator: 7
operands: 8
6Operationoperator: 23
operands: 9
7Literal
8ExprTuple10, 36
9ExprTuple11, 12
10Operationoperator: 47
operand: 17
11Operationoperator: 29
operands: 14
12Operationoperator: 15
operands: 16
13ExprTuple17
14ExprTuple36, 18
15Literal
16ExprTuple19, 20
17Variable
18Operationoperator: 43
operands: 21
19Operationoperator: 32
operand: 26
20Operationoperator: 23
operands: 24
21ExprTuple45, 25
22ExprTuple26
23Literal
24ExprTuple27, 28
25Operationoperator: 29
operands: 30
26Literal
27Operationoperator: 43
operands: 31
28Operationoperator: 32
operand: 36
29Literal
30ExprTuple36, 45
31ExprTuple34, 35
32Literal
33ExprTuple36
34Literal
35Operationoperator: 37
operands: 38
36Literal
37Literal
38ExprTuple45, 39, 40, 41, 42
39Literal
40Literal
41Operationoperator: 43
operands: 44
42Literal
43Literal
44ExprTuple45, 46
45Literal
46Operationoperator: 47
operand: 49
47Literal
48ExprTuple49
49Variable