logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , : , :
1theorem  ⊢  
 proveit.logic.sets.inclusion.unfold_subset_eq
2instantiation4, 8, 5, 17, 19, 6*  ⊢  
  : , : , :
3instantiation7, 8, 9, 10, 11, 12, 13, 14  ⊢  
  : , : , : , :
4theorem  ⊢  
 proveit.linear_algebra.tensors.tensor_prod_of_cart_exps_within_cart_exp
5instantiation20  ⊢  
  : , :
6instantiation15, 16, 30, 32  ⊢  
  : , : , :
7theorem  ⊢  
 proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space
8theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
9instantiation20  ⊢  
  : , :
10instantiation18, 17  ⊢  
  :
11instantiation18, 19  ⊢  
  :
12instantiation20  ⊢  
  : , :
13instantiation21, 22  ⊢  
  : , :
14axiom  ⊢  
 proveit.physics.quantum.QPE._u_ket_register
15theorem  ⊢  
 proveit.numbers.exponentiation.product_of_posnat_powers
16instantiation35, 23, 24  ⊢  
  : , : , :
17instantiation26, 37, 25  ⊢  
  : , :
18theorem  ⊢  
 proveit.linear_algebra.complex_vec_set_is_vec_space
19instantiation26, 37, 27  ⊢  
  : , :
20theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
21theorem  ⊢  
 proveit.logic.booleans.conjunction.left_from_and
22theorem  ⊢  
 proveit.physics.quantum.QPE._Psi_ket_is_normalized_vec
23theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
24instantiation35, 28, 29  ⊢  
  : , : , :
25instantiation35, 31, 30  ⊢  
  : , : , :
26theorem  ⊢  
 proveit.numbers.exponentiation.exp_natpos_closure
27instantiation35, 31, 32  ⊢  
  : , : , :
28theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
29instantiation35, 33, 34  ⊢  
  : , : , :
30axiom  ⊢  
 proveit.physics.quantum.QPE._t_in_natural_pos
31theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat
32axiom  ⊢  
 proveit.physics.quantum.QPE._s_in_nat_pos
33theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
34instantiation35, 36, 37  ⊢  
  : , : , :
35theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
36theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
37theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
*equality replacement requirements