# from the theory of proveit.physics.quantum.QPE¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
# import Expression classes needed to build the expression
from proveit import ExprTuple, e
from proveit.numbers import Add, Exp, Mult, Neg, frac, one, two
from proveit.physics.quantum.QPE import _two_pow_t

In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Add(Neg(Mult(frac(one, Exp(two, one)), _two_pow_t)), one, Neg(e)))

expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())

\left(-\left(\frac{1}{2^{1}} \cdot 2^{t}\right) + 1 - e\right)

In [5]:
stored_expr.style_options()

no style options
In [6]:
# display the expression information
stored_expr.expr_info()

core typesub-expressionsexpression
0ExprTuple1
1Operationoperator: 2
operands: 3
2Literal
3ExprTuple4, 23, 5
4Operationoperator: 7
operand: 9
5Operationoperator: 7
operand: 10
6ExprTuple9
7Literal
8ExprTuple10
9Operationoperator: 11
operands: 12
10Variable
11Literal
12ExprTuple13, 14
13Operationoperator: 15
operands: 16
14Operationoperator: 20
operands: 17
15Literal
16ExprTuple23, 18
17ExprTuple22, 19
18Operationoperator: 20
operands: 21
19Literal
20Literal
21ExprTuple22, 23
22Literal
23Literal