# from the theory of proveit.physics.quantum.QPE¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
# import Expression classes needed to build the expression
from proveit.numbers import Exp, Mult, Neg, frac, one, two
from proveit.physics.quantum.QPE import _two_pow_t

In [2]:
# build up the expression from sub-expressions
expr = Neg(Mult(frac(one, Exp(two, one)), _two_pow_t))

expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())

-\left(\frac{1}{2^{1}} \cdot 2^{t}\right)

In [5]:
stored_expr.style_options()

namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
notation_in_addWhen contained in an Add, use 'subtraction' or 'explicit_negation': For example, 'a - b' versus 'a + (-b)'.subtractionsubtraction('with_subtraction_notation', 'without_subtraction_notation')
In [6]:
# display the expression information
stored_expr.expr_info()

core typesub-expressionsexpression
0Operationoperator: 1
operand: 3
1Literal
2ExprTuple3
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple6, 7
6Operationoperator: 8
operands: 9
7Operationoperator: 13
operands: 10
8Literal
9ExprTuple16, 11
10ExprTuple15, 12
11Operationoperator: 13
operands: 14
12Literal
13Literal
14ExprTuple15, 16
15Literal
16Literal