# Show the Proof¶

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof

Out[1]:
step typerequirementsstatement
0instantiation1, 2, 3
: , : , :
1axiom
proveit.logic.equality.equals_transitivity
2instantiation4, 62, 5, 9, 6, 10, 15, 12, 31, 7
: , : , : , : , : , :
3instantiation8, 9, 67, 10, 11, 15, 12, 31, 13
: , : , : , : , : , : , : , :
4theorem
5theorem
proveit.numbers.numerals.decimals.nat3
6instantiation14
: , : , :
7instantiation17, 15
:
8theorem
9axiom
proveit.numbers.number_sets.natural_numbers.zero_in_nats
10theorem
proveit.core_expr_types.tuples.tuple_len_0_typical_eq
11instantiation16
: , :
12instantiation17, 18
:
13instantiation19
:
14theorem
proveit.numbers.numerals.decimals.tuple_len_3_typical_eq
15instantiation65, 47, 20
: , : , :
16theorem
proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
17theorem
proveit.numbers.negation.complex_closure
18instantiation21, 22, 23
: , :
19axiom
proveit.logic.equality.equals_reflexivity
20instantiation65, 55, 24
: , : , :
21theorem
proveit.numbers.multiplication.mult_complex_closure_bin
22instantiation25, 31, 26, 27
: , :
23instantiation65, 47, 28
: , : , :
24instantiation65, 63, 29
: , : , :
25theorem
proveit.numbers.division.div_complex_closure
26instantiation30, 42, 31
: , :
27instantiation32, 33, 34
: , : , :
28instantiation65, 55, 35
: , : , :
29instantiation65, 36, 37
: , : , :
30theorem
proveit.numbers.exponentiation.exp_complex_closure
31instantiation65, 47, 38
: , : , :
32theorem
proveit.logic.equality.sub_left_side_into
33instantiation39, 40
:
34instantiation41, 42
:
35instantiation65, 63, 43
: , : , :
36instantiation44, 54, 45
: , :
37assumption
38instantiation65, 55, 46
: , : , :
39theorem
proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
40theorem
proveit.numbers.numerals.decimals.posnat2
41theorem
proveit.numbers.exponentiation.complex_x_to_first_power_is_x
42instantiation65, 47, 48
: , : , :
43instantiation49, 64, 50
: , :
44theorem
proveit.numbers.number_sets.integers.int_interval_within_int
45instantiation51, 52, 53
: , :
46instantiation65, 63, 54
: , : , :
47theorem
proveit.numbers.number_sets.complex_numbers.real_within_complex
48instantiation65, 55, 56
: , : , :
49theorem
proveit.numbers.exponentiation.exp_int_closure
50instantiation65, 57, 58
: , : , :
51theorem
52instantiation65, 59, 60
: , : , :
53instantiation61, 64
:
54instantiation65, 66, 62
: , : , :
55theorem
proveit.numbers.number_sets.real_numbers.rational_within_real
56instantiation65, 63, 64
: , : , :
57theorem
proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat
58axiom
proveit.physics.quantum.QPE._t_in_natural_pos
59theorem
proveit.numbers.number_sets.integers.nat_pos_within_int
60theorem
proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos
61theorem
proveit.numbers.negation.int_closure
62theorem
proveit.numbers.numerals.decimals.nat1
63theorem
proveit.numbers.number_sets.rational_numbers.int_within_rational
64instantiation65, 66, 67
: , : , :
65theorem
proveit.logic.sets.inclusion.superset_membership_from_proper_subset
66theorem
proveit.numbers.number_sets.integers.nat_within_int
67theorem
proveit.numbers.numerals.decimals.nat2