logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4, 5*  ⊢  
  : , :
1theorem  ⊢  
 proveit.numbers.division.div_as_mult
2reference35  ⊢  
3instantiation22, 23, 31  ⊢  
  : , :
4instantiation6, 7, 8  ⊢  
  : , :
5instantiation26, 9, 10  ⊢  
  : , : , :
6theorem  ⊢  
 proveit.numbers.exponentiation.exp_rational_non_zero__not_zero
7instantiation78, 11, 12  ⊢  
  : , : , :
8instantiation78, 13, 56  ⊢  
  : , : , :
9instantiation14, 15  ⊢  
  : , : , :
10instantiation16, 17  ⊢  
  :
11theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
12instantiation78, 18, 80  ⊢  
  : , : , :
13theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational_nonzero
14axiom  ⊢  
 proveit.logic.equality.substitution
15instantiation19, 23, 38, 39, 20, 21*  ⊢  
  : , : , :
16theorem  ⊢  
 proveit.numbers.multiplication.elim_one_left
17instantiation22, 23, 24  ⊢  
  : , :
18theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
19theorem  ⊢  
 proveit.numbers.exponentiation.real_power_of_real_power
20instantiation25, 80  ⊢  
  :
21instantiation26, 27, 28  ⊢  
  : , : , :
22theorem  ⊢  
 proveit.numbers.exponentiation.exp_complex_closure
23instantiation78, 53, 29  ⊢  
  : , : , :
24instantiation30, 31  ⊢  
  :
25theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
26axiom  ⊢  
 proveit.logic.equality.equals_transitivity
27instantiation32, 42, 55, 73, 44, 43, 45, 46, 33  ⊢  
  : , : , : , : , : , :
28instantiation34, 55, 42, 43, 44, 45, 46, 35, 36*  ⊢  
  : , : , : , : , :
29instantiation78, 59, 37  ⊢  
  : , : , :
30theorem  ⊢  
 proveit.numbers.negation.complex_closure
31instantiation78, 53, 38  ⊢  
  : , : , :
32theorem  ⊢  
 proveit.numbers.multiplication.disassociation
33instantiation78, 53, 39  ⊢  
  : , : , :
34theorem  ⊢  
 proveit.numbers.multiplication.mult_neg_any
35instantiation78, 53, 40  ⊢  
  : , : , :
36instantiation41, 55, 42, 43, 44, 45, 46  ⊢  
  : , : , : , :
37instantiation78, 58, 47  ⊢  
  : , : , :
38instantiation78, 59, 48  ⊢  
  : , : , :
39instantiation78, 59, 49  ⊢  
  : , : , :
40instantiation78, 59, 50  ⊢  
  : , : , :
41theorem  ⊢  
 proveit.numbers.multiplication.elim_one_any
42axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
43instantiation51  ⊢  
  : , :
44theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
45instantiation78, 53, 52  ⊢  
  : , : , :
46instantiation78, 53, 54  ⊢  
  : , : , :
47instantiation78, 72, 55  ⊢  
  : , : , :
48instantiation78, 67, 56  ⊢  
  : , : , :
49instantiation78, 58, 57  ⊢  
  : , : , :
50instantiation78, 58, 66  ⊢  
  : , : , :
51theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
52instantiation78, 59, 60  ⊢  
  : , : , :
53theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
54instantiation61, 62, 71  ⊢  
  : , : , :
55theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
56instantiation63, 68, 64  ⊢  
  : , :
57instantiation65, 66  ⊢  
  :
58theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
59theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
60instantiation78, 67, 68  ⊢  
  : , : , :
61theorem  ⊢  
 proveit.logic.sets.inclusion.unfold_subset_eq
62instantiation69, 70  ⊢  
  : , :
63theorem  ⊢  
 proveit.numbers.multiplication.mult_rational_pos_closure_bin
64instantiation78, 79, 71  ⊢  
  : , : , :
65theorem  ⊢  
 proveit.numbers.negation.int_closure
66instantiation78, 72, 73  ⊢  
  : , : , :
67theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational
68instantiation74, 75, 76  ⊢  
  : , :
69theorem  ⊢  
 proveit.logic.sets.inclusion.relax_proper_subset
70theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.nat_pos_within_real
71axiom  ⊢  
 proveit.physics.quantum.QPE._t_in_natural_pos
72theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
73theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
74theorem  ⊢  
 proveit.numbers.division.div_rational_pos_closure
75instantiation78, 79, 77  ⊢  
  : , : , :
76instantiation78, 79, 80  ⊢  
  : , : , :
77theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
78theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
79theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos
80theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
*equality replacement requirements