logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , :
1theorem  ⊢  
 proveit.numbers.exponentiation.exp_complex_closure
2instantiation26, 8, 4  ⊢  
  : , : , :
3instantiation5, 6  ⊢  
  :
4instantiation26, 12, 7  ⊢  
  : , : , :
5theorem  ⊢  
 proveit.numbers.negation.complex_closure
6instantiation26, 8, 9  ⊢  
  : , : , :
7instantiation26, 10, 11  ⊢  
  : , : , :
8theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
9instantiation26, 12, 13  ⊢  
  : , : , :
10theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
11instantiation26, 14, 15  ⊢  
  : , : , :
12theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
13instantiation26, 16, 17  ⊢  
  : , : , :
14theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
15theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
16theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational
17instantiation18, 19, 20  ⊢  
  : , :
18theorem  ⊢  
 proveit.numbers.multiplication.mult_rational_pos_closure_bin
19instantiation21, 22, 23  ⊢  
  : , :
20instantiation26, 27, 24  ⊢  
  : , : , :
21theorem  ⊢  
 proveit.numbers.division.div_rational_pos_closure
22instantiation26, 27, 25  ⊢  
  : , : , :
23instantiation26, 27, 28  ⊢  
  : , : , :
24axiom  ⊢  
 proveit.physics.quantum.QPE._t_in_natural_pos
25theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
26theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
27theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos
28theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2