logo

Expression of type Implies

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable, VertExprArray
from proveit.logic import Implies
from proveit.numbers import Add, Interval, one
from proveit.physics.quantum import I, ket_plus
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import QPE, QPE1, _Psi_circuit, _Psi_ket, _U, _ket_u, _s, _t
from proveit.physics.quantum.circuits import Gate, Input, MultiQubitElem, Output, Qcircuit, QcircuitEquiv
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(_t, _s)
sub_expr3 = Add(_t, one)
sub_expr4 = Interval(one, _t)
sub_expr5 = Interval(one, sub_expr2)
sub_expr6 = Interval(sub_expr3, sub_expr2)
sub_expr7 = MultiQubitElem(element = Gate(operation = QPE1(_U, _t), part = sub_expr1), targets = sub_expr5)
sub_expr8 = MultiQubitElem(element = Gate(operation = QPE(_U, _t), part = sub_expr1), targets = sub_expr5)
sub_expr9 = [ExprRange(sub_expr1, sub_expr7, one, _t), ExprRange(sub_expr1, sub_expr7, sub_expr3, sub_expr2)]
sub_expr10 = [ExprRange(sub_expr1, MultiQubitElem(element = Gate(operation = InverseFourierTransform(_t), part = sub_expr1), targets = sub_expr4), one, _t), ExprRange(sub_expr1, Gate(operation = I).with_implicit_representation(), one, _s)]
expr = Implies(QcircuitEquiv(Qcircuit(vert_expr_array = VertExprArray(sub_expr9, sub_expr10)), Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, sub_expr8, one, _t), ExprRange(sub_expr1, sub_expr8, sub_expr3, sub_expr2)]))), QcircuitEquiv(Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, Input(state = ket_plus), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Input(state = _ket_u, part = sub_expr1), targets = sub_expr6), one, _s)], sub_expr9, sub_expr10, [ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _Psi_ket, part = sub_expr1), targets = sub_expr4), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = sub_expr6), one, _s)])), _Psi_circuit).with_wrapping_at(1)).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \multigate{1}{\textrm{QPE}_1\left(U, t\right)} & \gate{{\mathrm {FT}}^{\dag}_{t}} & { /^{t} } \qw \\
& \ghost{\textrm{QPE}_1\left(U, t\right)} & { /^{s} } \qw & { /^{s} } \qw
} \end{array}\right) \cong \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \multigate{1}{\textrm{QPE}\left(U, t\right)} & { /^{t} } \qw \\
& \ghost{\textrm{QPE}\left(U, t\right)} & { /^{s} } \qw
} \end{array}\right)\right) \Rightarrow  \\ \left(\begin{array}{c} \begin{array}{l} \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\qin{\lvert + \rangle} & \multigate{4}{\textrm{QPE}_1\left(U, t\right)} & \multigate{3}{{\mathrm {FT}}^{\dag}_{t}} & \multiqout{3}{\lvert \Psi \rangle} \\
\qin{\lvert + \rangle} & \ghost{\textrm{QPE}_1\left(U, t\right)} & \ghost{{\mathrm {FT}}^{\dag}_{t}} & \ghostqout{\lvert \Psi \rangle} \\
\qin{\begin{array}{c}:\\ \left(t - 3\right) \times \\:\end{array}} & \ghost{\textrm{QPE}_1\left(U, t\right)} & \ghost{{\mathrm {FT}}^{\dag}_{t}} & \ghostqout{\lvert \Psi \rangle} \\
\qin{\lvert + \rangle} & \ghost{\textrm{QPE}_1\left(U, t\right)} & \ghost{{\mathrm {FT}}^{\dag}_{t}} & \ghostqout{\lvert \Psi \rangle} \\
\qin{\lvert u \rangle} & \ghost{\textrm{QPE}_1\left(U, t\right)} & { /^{s} } \qw & \qout{\lvert u \rangle}
} \end{array}\right) \\  \cong \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\qin{\lvert + \rangle} & \multigate{4}{\textrm{QPE}\left(U, t\right)} & \multiqout{3}{\lvert \Psi \rangle} \\
\qin{\lvert + \rangle} & \ghost{\textrm{QPE}\left(U, t\right)} & \ghostqout{\lvert \Psi \rangle} \\
\qin{\begin{array}{c}:\\ \left(t - 3\right) \times \\:\end{array}} & \ghost{\textrm{QPE}\left(U, t\right)} & \ghostqout{\lvert \Psi \rangle} \\
\qin{\lvert + \rangle} & \ghost{\textrm{QPE}\left(U, t\right)} & \ghostqout{\lvert \Psi \rangle} \\
\qin{\lvert u \rangle} & \ghost{\textrm{QPE}\left(U, t\right)} & \qout{\lvert u \rangle}
} \end{array}\right) \end{array} \end{array}\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9
6Literal
7ExprTuple10, 11
8Operationoperator: 15
operands: 12
9Operationoperator: 15
operand: 20
10Operationoperator: 15
operands: 14
11Operationoperator: 15
operands: 16
12ExprTuple17, 18
13ExprTuple20
14ExprTuple19, 17, 18, 21
15Literal
16ExprTuple19, 20, 21
17ExprTuple22, 23
18ExprTuple24, 25
19ExprTuple26, 27
20ExprTuple28, 29
21ExprTuple30, 31
22ExprRangelambda_map: 32
start_index: 101
end_index: 102
23ExprRangelambda_map: 32
start_index: 90
end_index: 91
24ExprRangelambda_map: 33
start_index: 101
end_index: 102
25ExprRangelambda_map: 34
start_index: 101
end_index: 103
26ExprRangelambda_map: 35
start_index: 101
end_index: 102
27ExprRangelambda_map: 36
start_index: 101
end_index: 103
28ExprRangelambda_map: 37
start_index: 101
end_index: 102
29ExprRangelambda_map: 37
start_index: 90
end_index: 91
30ExprRangelambda_map: 38
start_index: 101
end_index: 102
31ExprRangelambda_map: 39
start_index: 101
end_index: 103
32Lambdaparameter: 89
body: 40
33Lambdaparameter: 89
body: 41
34Lambdaparameter: 89
body: 42
35Lambdaparameter: 89
body: 43
36Lambdaparameter: 89
body: 44
37Lambdaparameter: 89
body: 45
38Lambdaparameter: 89
body: 46
39Lambdaparameter: 89
body: 48
40Operationoperator: 56
operands: 49
41Operationoperator: 56
operands: 50
42Operationoperator: 74
operands: 51
43Operationoperator: 73
operands: 52
44Operationoperator: 56
operands: 53
45Operationoperator: 56
operands: 54
46Operationoperator: 56
operands: 55
47ExprTuple89
48Operationoperator: 56
operands: 57
49NamedExprselement: 58
targets: 64
50NamedExprselement: 59
targets: 66
51NamedExprsoperation: 60
52NamedExprsstate: 61
53NamedExprselement: 62
targets: 68
54NamedExprselement: 63
targets: 64
55NamedExprselement: 65
targets: 66
56Literal
57NamedExprselement: 67
targets: 68
58Operationoperator: 74
operands: 69
59Operationoperator: 74
operands: 70
60Literal
61Operationoperator: 71
operand: 85
62Operationoperator: 73
operands: 80
63Operationoperator: 74
operands: 75
64Operationoperator: 81
operands: 76
65Operationoperator: 79
operands: 77
66Operationoperator: 81
operands: 78
67Operationoperator: 79
operands: 80
68Operationoperator: 81
operands: 82
69NamedExprsoperation: 83
part: 89
70NamedExprsoperation: 84
part: 89
71Literal
72ExprTuple85
73Literal
74Literal
75NamedExprsoperation: 86
part: 89
76ExprTuple101, 91
77NamedExprsstate: 87
part: 89
78ExprTuple101, 102
79Literal
80NamedExprsstate: 88
part: 89
81Literal
82ExprTuple90, 91
83Operationoperator: 92
operands: 96
84Operationoperator: 93
operand: 102
85Literal
86Operationoperator: 95
operands: 96
87Literal
88Literal
89Variable
90Operationoperator: 98
operands: 97
91Operationoperator: 98
operands: 99
92Literal
93Literal
94ExprTuple102
95Literal
96ExprTuple100, 102
97ExprTuple102, 101
98Literal
99ExprTuple102, 103
100Literal
101Literal
102Literal
103Literal