logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, ExprTuple, Variable, VertExprArray
from proveit.numbers import Add, Interval, one
from proveit.physics.quantum import I, ket_plus
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import QPE, QPE1, _Psi_circuit, _Psi_ket, _U, _ket_u, _s, _t
from proveit.physics.quantum.circuits import Gate, Input, MultiQubitElem, Output, Qcircuit, QcircuitEquiv
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(_t, _s)
sub_expr3 = Add(_t, one)
sub_expr4 = Interval(one, _t)
sub_expr5 = Interval(one, sub_expr2)
sub_expr6 = Interval(sub_expr3, sub_expr2)
sub_expr7 = MultiQubitElem(element = Gate(operation = QPE1(_U, _t), part = sub_expr1), targets = sub_expr5)
sub_expr8 = MultiQubitElem(element = Gate(operation = QPE(_U, _t), part = sub_expr1), targets = sub_expr5)
sub_expr9 = [ExprRange(sub_expr1, sub_expr7, one, _t), ExprRange(sub_expr1, sub_expr7, sub_expr3, sub_expr2)]
sub_expr10 = [ExprRange(sub_expr1, MultiQubitElem(element = Gate(operation = InverseFourierTransform(_t), part = sub_expr1), targets = sub_expr4), one, _t), ExprRange(sub_expr1, Gate(operation = I).with_implicit_representation(), one, _s)]
expr = ExprTuple(QcircuitEquiv(Qcircuit(vert_expr_array = VertExprArray(sub_expr9, sub_expr10)), Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, sub_expr8, one, _t), ExprRange(sub_expr1, sub_expr8, sub_expr3, sub_expr2)]))), QcircuitEquiv(Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, Input(state = ket_plus), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Input(state = _ket_u, part = sub_expr1), targets = sub_expr6), one, _s)], sub_expr9, sub_expr10, [ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _Psi_ket, part = sub_expr1), targets = sub_expr4), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = sub_expr6), one, _s)])), _Psi_circuit).with_wrapping_at(1))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \multigate{1}{\textrm{QPE}_1\left(U, t\right)} & \gate{{\mathrm {FT}}^{\dag}_{t}} & { /^{t} } \qw \\
& \ghost{\textrm{QPE}_1\left(U, t\right)} & { /^{s} } \qw & { /^{s} } \qw
} \end{array}\right) \cong \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \multigate{1}{\textrm{QPE}\left(U, t\right)} & { /^{t} } \qw \\
& \ghost{\textrm{QPE}\left(U, t\right)} & { /^{s} } \qw
} \end{array}\right), \begin{array}{c} \begin{array}{l} \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\qin{\lvert + \rangle} & \multigate{4}{\textrm{QPE}_1\left(U, t\right)} & \multigate{3}{{\mathrm {FT}}^{\dag}_{t}} & \multiqout{3}{\lvert \Psi \rangle} \\
\qin{\lvert + \rangle} & \ghost{\textrm{QPE}_1\left(U, t\right)} & \ghost{{\mathrm {FT}}^{\dag}_{t}} & \ghostqout{\lvert \Psi \rangle} \\
\qin{\begin{array}{c}:\\ \left(t - 3\right) \times \\:\end{array}} & \ghost{\textrm{QPE}_1\left(U, t\right)} & \ghost{{\mathrm {FT}}^{\dag}_{t}} & \ghostqout{\lvert \Psi \rangle} \\
\qin{\lvert + \rangle} & \ghost{\textrm{QPE}_1\left(U, t\right)} & \ghost{{\mathrm {FT}}^{\dag}_{t}} & \ghostqout{\lvert \Psi \rangle} \\
\qin{\lvert u \rangle} & \ghost{\textrm{QPE}_1\left(U, t\right)} & { /^{s} } \qw & \qout{\lvert u \rangle}
} \end{array}\right) \\  \cong \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\qin{\lvert + \rangle} & \multigate{4}{\textrm{QPE}\left(U, t\right)} & \multiqout{3}{\lvert \Psi \rangle} \\
\qin{\lvert + \rangle} & \ghost{\textrm{QPE}\left(U, t\right)} & \ghostqout{\lvert \Psi \rangle} \\
\qin{\begin{array}{c}:\\ \left(t - 3\right) \times \\:\end{array}} & \ghost{\textrm{QPE}\left(U, t\right)} & \ghostqout{\lvert \Psi \rangle} \\
\qin{\lvert + \rangle} & \ghost{\textrm{QPE}\left(U, t\right)} & \ghostqout{\lvert \Psi \rangle} \\
\qin{\lvert u \rangle} & \ghost{\textrm{QPE}\left(U, t\right)} & \qout{\lvert u \rangle}
} \end{array}\right) \end{array} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple6, 7
4Literal
5ExprTuple8, 9
6Operationoperator: 13
operands: 10
7Operationoperator: 13
operand: 18
8Operationoperator: 13
operands: 12
9Operationoperator: 13
operands: 14
10ExprTuple15, 16
11ExprTuple18
12ExprTuple17, 15, 16, 19
13Literal
14ExprTuple17, 18, 19
15ExprTuple20, 21
16ExprTuple22, 23
17ExprTuple24, 25
18ExprTuple26, 27
19ExprTuple28, 29
20ExprRangelambda_map: 30
start_index: 99
end_index: 100
21ExprRangelambda_map: 30
start_index: 88
end_index: 89
22ExprRangelambda_map: 31
start_index: 99
end_index: 100
23ExprRangelambda_map: 32
start_index: 99
end_index: 101
24ExprRangelambda_map: 33
start_index: 99
end_index: 100
25ExprRangelambda_map: 34
start_index: 99
end_index: 101
26ExprRangelambda_map: 35
start_index: 99
end_index: 100
27ExprRangelambda_map: 35
start_index: 88
end_index: 89
28ExprRangelambda_map: 36
start_index: 99
end_index: 100
29ExprRangelambda_map: 37
start_index: 99
end_index: 101
30Lambdaparameter: 87
body: 38
31Lambdaparameter: 87
body: 39
32Lambdaparameter: 87
body: 40
33Lambdaparameter: 87
body: 41
34Lambdaparameter: 87
body: 42
35Lambdaparameter: 87
body: 43
36Lambdaparameter: 87
body: 44
37Lambdaparameter: 87
body: 46
38Operationoperator: 54
operands: 47
39Operationoperator: 54
operands: 48
40Operationoperator: 72
operands: 49
41Operationoperator: 71
operands: 50
42Operationoperator: 54
operands: 51
43Operationoperator: 54
operands: 52
44Operationoperator: 54
operands: 53
45ExprTuple87
46Operationoperator: 54
operands: 55
47NamedExprselement: 56
targets: 62
48NamedExprselement: 57
targets: 64
49NamedExprsoperation: 58
50NamedExprsstate: 59
51NamedExprselement: 60
targets: 66
52NamedExprselement: 61
targets: 62
53NamedExprselement: 63
targets: 64
54Literal
55NamedExprselement: 65
targets: 66
56Operationoperator: 72
operands: 67
57Operationoperator: 72
operands: 68
58Literal
59Operationoperator: 69
operand: 83
60Operationoperator: 71
operands: 78
61Operationoperator: 72
operands: 73
62Operationoperator: 79
operands: 74
63Operationoperator: 77
operands: 75
64Operationoperator: 79
operands: 76
65Operationoperator: 77
operands: 78
66Operationoperator: 79
operands: 80
67NamedExprsoperation: 81
part: 87
68NamedExprsoperation: 82
part: 87
69Literal
70ExprTuple83
71Literal
72Literal
73NamedExprsoperation: 84
part: 87
74ExprTuple99, 89
75NamedExprsstate: 85
part: 87
76ExprTuple99, 100
77Literal
78NamedExprsstate: 86
part: 87
79Literal
80ExprTuple88, 89
81Operationoperator: 90
operands: 94
82Operationoperator: 91
operand: 100
83Literal
84Operationoperator: 93
operands: 94
85Literal
86Literal
87Variable
88Operationoperator: 96
operands: 95
89Operationoperator: 96
operands: 97
90Literal
91Literal
92ExprTuple100
93Literal
94ExprTuple98, 100
95ExprTuple100, 99
96Literal
97ExprTuple100, 101
98Literal
99Literal
100Literal
101Literal