logo

Expression of type Implies

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable, VertExprArray
from proveit.linear_algebra import TensorProd
from proveit.logic import Equals, Implies
from proveit.numbers import Add, Interval, one
from proveit.physics.quantum import I
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import _Psi_ket, _ket_u, _psi__t_ket, _s, _t
from proveit.physics.quantum.circuits import Gate, Input, MultiQubitElem, Output, Qcircuit
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(_t, _s)
sub_expr3 = Interval(one, _t)
sub_expr4 = Add(_t, one)
sub_expr5 = MultiQubitElem(element = Input(state = TensorProd(_psi__t_ket, _ket_u), part = sub_expr1), targets = Interval(one, sub_expr2))
sub_expr6 = [ExprRange(sub_expr1, MultiQubitElem(element = Gate(operation = InverseFourierTransform(_t), part = sub_expr1), targets = sub_expr3), one, _t), ExprRange(sub_expr1, Gate(operation = I).with_implicit_representation(), one, _s)]
sub_expr7 = [ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _Psi_ket, part = sub_expr1), targets = sub_expr3), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = Interval(sub_expr4, sub_expr2)), one, _s)]
sub_expr8 = VertExprArray([ExprRange(sub_expr1, sub_expr5, one, sub_expr2)], sub_expr6, sub_expr7)
sub_expr9 = VertExprArray([ExprRange(sub_expr1, sub_expr5, one, _t).with_wrapping_at(2,6), ExprRange(sub_expr1, sub_expr5, sub_expr4, sub_expr2).with_wrapping_at(2,6)], sub_expr6, sub_expr7)
expr = Implies(Equals(sub_expr8, sub_expr9), Equals(Qcircuit(vert_expr_array = sub_expr8), Qcircuit(vert_expr_array = sub_expr9))).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(VertExprArray\left(\begin{array}{c} \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}\right),  \\ \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, ..\left(s - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}\right),  \\ \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}\right) \end{array}\right) = \left(\begin{array}{ccc} 
 \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array} \\
\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array} \\
\vdots & \vdots & \vdots \\
\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array} \\
\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + 1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array} \\
\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + 2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array} \\
\vdots & \begin{array}{c}:\\ \left(s - 3\right) \times \\:\end{array} & \vdots \\
\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array} \\
\end{array}
\right)\right) \Rightarrow  \\ \left(QCIRCUIT\left(VertExprArray\left(\begin{array}{c} \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}\right),  \\ \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, ..\left(s - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}\right),  \\ \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}\right) \end{array}\right)\right) = \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\multiqin{1}{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle} & \gate{{\mathrm {FT}}^{\dag}_{t}} & \qout{\lvert \Psi \rangle} \\
\ghostqin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle} & { /^{s} } \qw & \qout{\lvert u \rangle}
} \end{array}\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple10, 12
6Literal
7ExprTuple8, 9
8Operationoperator: 11
operands: 10
9Operationoperator: 11
operands: 12
10ExprTuple13, 15, 16
11Literal
12ExprTuple14, 15, 16
13ExprTuple17
14ExprTuple18, 19
15ExprTuple20, 21
16ExprTuple22, 23
17ExprRangelambda_map: 24
start_index: 74
end_index: 65
18ExprRangelambda_map: 24
start_index: 74
end_index: 78
19ExprRangelambda_map: 24
start_index: 64
end_index: 65
20ExprRangelambda_map: 25
start_index: 74
end_index: 78
21ExprRangelambda_map: 26
start_index: 74
end_index: 75
22ExprRangelambda_map: 27
start_index: 74
end_index: 78
23ExprRangelambda_map: 28
start_index: 74
end_index: 75
24Lambdaparameter: 63
body: 29
25Lambdaparameter: 63
body: 30
26Lambdaparameter: 63
body: 31
27Lambdaparameter: 63
body: 32
28Lambdaparameter: 63
body: 34
29Operationoperator: 39
operands: 35
30Operationoperator: 39
operands: 36
31Operationoperator: 52
operands: 37
32Operationoperator: 39
operands: 38
33ExprTuple63
34Operationoperator: 39
operands: 40
35NamedExprselement: 41
targets: 42
36NamedExprselement: 43
targets: 46
37NamedExprsoperation: 44
38NamedExprselement: 45
targets: 46
39Literal
40NamedExprselement: 47
targets: 48
41Operationoperator: 49
operands: 50
42Operationoperator: 58
operands: 51
43Operationoperator: 52
operands: 53
44Literal
45Operationoperator: 56
operands: 54
46Operationoperator: 58
operands: 55
47Operationoperator: 56
operands: 57
48Operationoperator: 58
operands: 59
49Literal
50NamedExprsstate: 60
part: 63
51ExprTuple74, 65
52Literal
53NamedExprsoperation: 61
part: 63
54NamedExprsstate: 62
part: 63
55ExprTuple74, 78
56Literal
57NamedExprsstate: 73
part: 63
58Literal
59ExprTuple64, 65
60Operationoperator: 66
operands: 67
61Operationoperator: 68
operand: 78
62Literal
63Variable
64Operationoperator: 70
operands: 69
65Operationoperator: 70
operands: 71
66Literal
67ExprTuple72, 73
68Literal
69ExprTuple78, 74
70Literal
71ExprTuple78, 75
72Operationoperator: 76
operand: 78
73Literal
74Literal
75Literal
76Literal
77ExprTuple78
78Literal