logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, ExprTuple, Variable, VertExprArray
from proveit.linear_algebra import TensorProd
from proveit.numbers import Add, Interval, one
from proveit.physics.quantum import I
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import _Psi_ket, _ket_u, _psi__t_ket, _s, _t
from proveit.physics.quantum.circuits import Gate, Input, MultiQubitElem, Output, Qcircuit
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(_t, _s)
sub_expr3 = Interval(one, _t)
sub_expr4 = Add(_t, one)
sub_expr5 = MultiQubitElem(element = Input(state = TensorProd(_psi__t_ket, _ket_u), part = sub_expr1), targets = Interval(one, sub_expr2))
sub_expr6 = [ExprRange(sub_expr1, MultiQubitElem(element = Gate(operation = InverseFourierTransform(_t), part = sub_expr1), targets = sub_expr3), one, _t), ExprRange(sub_expr1, Gate(operation = I).with_implicit_representation(), one, _s)]
sub_expr7 = [ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _Psi_ket, part = sub_expr1), targets = sub_expr3), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = Interval(sub_expr4, sub_expr2)), one, _s)]
expr = ExprTuple(Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, sub_expr5, one, sub_expr2)], sub_expr6, sub_expr7)), Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, sub_expr5, one, _t).with_wrapping_at(2,6), ExprRange(sub_expr1, sub_expr5, sub_expr4, sub_expr2).with_wrapping_at(2,6)], sub_expr6, sub_expr7)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(QCIRCUIT\left(VertExprArray\left(\begin{array}{c} \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}\right),  \\ \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, ..\left(s - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}\right),  \\ \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}\right) \end{array}\right)\right), \begin{array}{c} \Qcircuit@C=1em @R=.7em{
\multiqin{1}{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle} & \gate{{\mathrm {FT}}^{\dag}_{t}} & \qout{\lvert \Psi \rangle} \\
\ghostqin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle} & { /^{s} } \qw & \qout{\lvert u \rangle}
} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple6, 8, 9
4Literal
5ExprTuple7, 8, 9
6ExprTuple10
7ExprTuple11, 12
8ExprTuple13, 14
9ExprTuple15, 16
10ExprRangelambda_map: 17
start_index: 67
end_index: 58
11ExprRangelambda_map: 17
start_index: 67
end_index: 71
12ExprRangelambda_map: 17
start_index: 57
end_index: 58
13ExprRangelambda_map: 18
start_index: 67
end_index: 71
14ExprRangelambda_map: 19
start_index: 67
end_index: 68
15ExprRangelambda_map: 20
start_index: 67
end_index: 71
16ExprRangelambda_map: 21
start_index: 67
end_index: 68
17Lambdaparameter: 56
body: 22
18Lambdaparameter: 56
body: 23
19Lambdaparameter: 56
body: 24
20Lambdaparameter: 56
body: 25
21Lambdaparameter: 56
body: 27
22Operationoperator: 32
operands: 28
23Operationoperator: 32
operands: 29
24Operationoperator: 45
operands: 30
25Operationoperator: 32
operands: 31
26ExprTuple56
27Operationoperator: 32
operands: 33
28NamedExprselement: 34
targets: 35
29NamedExprselement: 36
targets: 39
30NamedExprsoperation: 37
31NamedExprselement: 38
targets: 39
32Literal
33NamedExprselement: 40
targets: 41
34Operationoperator: 42
operands: 43
35Operationoperator: 51
operands: 44
36Operationoperator: 45
operands: 46
37Literal
38Operationoperator: 49
operands: 47
39Operationoperator: 51
operands: 48
40Operationoperator: 49
operands: 50
41Operationoperator: 51
operands: 52
42Literal
43NamedExprsstate: 53
part: 56
44ExprTuple67, 58
45Literal
46NamedExprsoperation: 54
part: 56
47NamedExprsstate: 55
part: 56
48ExprTuple67, 71
49Literal
50NamedExprsstate: 66
part: 56
51Literal
52ExprTuple57, 58
53Operationoperator: 59
operands: 60
54Operationoperator: 61
operand: 71
55Literal
56Variable
57Operationoperator: 63
operands: 62
58Operationoperator: 63
operands: 64
59Literal
60ExprTuple65, 66
61Literal
62ExprTuple71, 67
63Literal
64ExprTuple71, 68
65Operationoperator: 69
operand: 71
66Literal
67Literal
68Literal
69Literal
70ExprTuple71
71Literal