logo

Expression of type Lambda

from the theory of proveit.physics.quantum.QFT

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, n
from proveit.linear_algebra import Unitary
from proveit.logic import InSet
from proveit.numbers import Exp, NaturalPos, two
from proveit.physics.quantum.QFT import InverseFourierTransform
In [2]:
# build up the expression from sub-expressions
expr = Lambda(n, Conditional(InSet(InverseFourierTransform(n), Unitary(Exp(two, n))), InSet(n, NaturalPos)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
n \mapsto \left\{{\mathrm {FT}}^{\dag}_{n} \in \textrm{U}\left(2^{n}\right) \textrm{ if } n \in \mathbb{N}^+\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 18
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 5
operands: 4
3Operationoperator: 5
operands: 6
4ExprTuple7, 8
5Literal
6ExprTuple18, 9
7Operationoperator: 10
operand: 18
8Operationoperator: 12
operand: 14
9Literal
10Literal
11ExprTuple18
12Literal
13ExprTuple14
14Operationoperator: 15
operands: 16
15Literal
16ExprTuple17, 18
17Literal
18Variable