logo

Expression of type Conditional

from the theory of proveit.physics.quantum.QFT

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, n
from proveit.linear_algebra import Unitary
from proveit.logic import InSet
from proveit.numbers import Exp, NaturalPos, two
from proveit.physics.quantum.QFT import InverseFourierTransform
In [2]:
# build up the expression from sub-expressions
expr = Conditional(InSet(InverseFourierTransform(n), Unitary(Exp(two, n))), InSet(n, NaturalPos))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{{\mathrm {FT}}^{\dag}_{n} \in \textrm{U}\left(2^{n}\right) \textrm{ if } n \in \mathbb{N}^+\right..
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
condition_delimiter'comma' or 'and'commacomma('with_comma_delimiter', 'with_conjunction_delimiter')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Conditionalvalue: 1
condition: 2
1Operationoperator: 4
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple6, 7
4Literal
5ExprTuple17, 8
6Operationoperator: 9
operand: 17
7Operationoperator: 11
operand: 13
8Literal
9Literal
10ExprTuple17
11Literal
12ExprTuple13
13Operationoperator: 14
operands: 15
14Literal
15ExprTuple16, 17
16Literal
17Variable