logo

Expression of type Equals

from the theory of proveit.numbers.summation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, IndexedVar, Variable, a, c, l
from proveit.logic import Equals
from proveit.numbers import Add, Integer, Mult, Sum, one, zero
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = [l]
sub_expr3 = Add(l, one)
sub_expr4 = IndexedVar(c, one)
sub_expr5 = ExprRange(sub_expr1, IndexedVar(a, sub_expr1), one, zero)
expr = Equals(Mult(sub_expr5, Sum(index_or_indices = sub_expr2, summand = sub_expr3, domain = Integer), sub_expr4), Sum(index_or_indices = sub_expr2, summand = Mult(sub_expr5, sub_expr3, sub_expr4), domain = Integer)).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{0} \cdot \left[\sum_{l \in \mathbb{Z}}~\left(l + 1\right)\right] \cdot c_{1}\right) =  \\ \left[\sum_{l \in \mathbb{Z}}~\left(a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{0} \cdot \left(l + 1\right) \cdot c_{1}\right)\right] \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 16
operands: 5
4Operationoperator: 9
operand: 8
5ExprTuple19, 7, 21
6ExprTuple8
7Operationoperator: 9
operand: 12
8Lambdaparameter: 32
body: 11
9Literal
10ExprTuple12
11Conditionalvalue: 13
condition: 18
12Lambdaparameter: 32
body: 15
13Operationoperator: 16
operands: 17
14ExprTuple32
15Conditionalvalue: 20
condition: 18
16Literal
17ExprTuple19, 20, 21
18Operationoperator: 22
operands: 23
19ExprRangelambda_map: 24
start_index: 33
end_index: 25
20Operationoperator: 26
operands: 27
21IndexedVarvariable: 28
index: 33
22Literal
23ExprTuple32, 30
24Lambdaparameter: 36
body: 31
25Literal
26Literal
27ExprTuple32, 33
28Variable
29ExprTuple33
30Literal
31IndexedVarvariable: 34
index: 36
32Variable
33Literal
34Variable
35ExprTuple36
36Variable