logo

Expression of type Lambda

from the theory of proveit.numbers.summation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprRange, IndexedVar, Lambda, Variable, a, c, l
from proveit.logic import InSet
from proveit.numbers import Add, Integer, Mult, one, zero
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
expr = Lambda(l, Conditional(Mult(ExprRange(sub_expr1, IndexedVar(a, sub_expr1), one, zero), Add(l, one), IndexedVar(c, one)), InSet(l, Integer)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
l \mapsto \left\{a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{0} \cdot \left(l + 1\right) \cdot c_{1} \textrm{ if } l \in \mathbb{Z}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 20
body: 2
1ExprTuple20
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 10, 11
7Literal
8ExprTuple20, 12
9ExprRangelambda_map: 13
start_index: 21
end_index: 14
10Operationoperator: 15
operands: 16
11IndexedVarvariable: 17
index: 21
12Literal
13Lambdaparameter: 24
body: 19
14Literal
15Literal
16ExprTuple20, 21
17Variable
18ExprTuple21
19IndexedVarvariable: 22
index: 24
20Variable
21Literal
22Variable
23ExprTuple24
24Variable