| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | , ⊢  |
| : , : , : , :  |
1 | theorem | | ⊢  |
| proveit.logic.equality.four_chain_transitivity |
2 | instantiation | 28, 5 | , ⊢  |
| : , : , :  |
3 | instantiation | 28, 6 | , ⊢  |
| : , : , :  |
4 | instantiation | 30, 7, 53, 8* | , ⊢  |
| : , :  |
5 | instantiation | 9, 61, 56, 36, 38, 37, 39, 40, 26, 41 | , ⊢  |
| : , : , : , : , : , : , :  |
6 | instantiation | 35, 36, 11, 56, 37, 12, 39, 40, 41, 26 | , ⊢  |
| : , : , : , : , : , :  |
7 | instantiation | 10, 11, 12, 51, 52, 49 | , ⊢  |
| : , :  |
8 | instantiation | 19, 13, 14 | , ⊢  |
| : , : , :  |
9 | theorem | | ⊢  |
| proveit.numbers.addition.rightward_commutation |
10 | theorem | | ⊢  |
| proveit.numbers.addition.add_real_closure |
11 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
12 | instantiation | 15 | ⊢  |
| : , : , :  |
13 | instantiation | 28, 16 | , ⊢  |
| : , : , :  |
14 | instantiation | 19, 17, 18 | , ⊢  |
| : , : , :  |
15 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
16 | instantiation | 19, 20, 21 | , ⊢  |
| : , : , :  |
17 | instantiation | 22, 36, 61, 56, 37, 23, 25, 41, 26 | , ⊢  |
| : , : , : , : , : , :  |
18 | instantiation | 35, 56, 61, 36, 24, 37, 25, 41, 26, 27* | , ⊢  |
| : , : , : , : , : , :  |
19 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
20 | instantiation | 28, 29 | , ⊢  |
| : , : , :  |
21 | instantiation | 30, 45, 58 | , ⊢  |
| : , :  |
22 | theorem | | ⊢  |
| proveit.numbers.addition.disassociation |
23 | instantiation | 47 | ⊢  |
| : , :  |
24 | instantiation | 47 | ⊢  |
| : , :  |
25 | instantiation | 31, 32, 33 | , ⊢  |
| : , : , :  |
26 | instantiation | 59, 48, 34 | ⊢  |
| : , : , :  |
27 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_2_1 |
28 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
29 | instantiation | 35, 36, 61, 56, 37, 38, 39, 40, 41 | , ⊢  |
| : , : , : , : , : , :  |
30 | theorem | | ⊢  |
| proveit.numbers.rounding.round_of_real_plus_int |
31 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.unfold_subset_eq |
32 | instantiation | 42, 43 | ⊢  |
| : , :  |
33 | instantiation | 44, 45 | , ⊢  |
| :  |
34 | instantiation | 59, 54, 46 | ⊢  |
| : , : , :  |
35 | theorem | | ⊢  |
| proveit.numbers.addition.association |
36 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
37 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
38 | instantiation | 47 | ⊢  |
| : , :  |
39 | instantiation | 59, 48, 51 | ⊢  |
| : , : , :  |
40 | instantiation | 59, 48, 52 | ⊢  |
| : , : , :  |
41 | instantiation | 59, 48, 49 | ⊢  |
| : , : , :  |
42 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.relax_proper_subset |
43 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.int_within_complex |
44 | axiom | | ⊢  |
| proveit.numbers.rounding.round_is_an_int |
45 | instantiation | 50, 51, 52 | , ⊢  |
| : , :  |
46 | instantiation | 59, 57, 53 | ⊢  |
| : , : , :  |
47 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
48 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
49 | instantiation | 59, 54, 55 | ⊢  |
| : , : , :  |
50 | theorem | | ⊢  |
| proveit.numbers.addition.add_real_closure_bin |
51 | assumption | | ⊢  |
52 | assumption | | ⊢  |
53 | instantiation | 59, 60, 56 | ⊢  |
| : , : , :  |
54 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
55 | instantiation | 59, 57, 58 | ⊢  |
| : , : , :  |
56 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
57 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
58 | instantiation | 59, 60, 61 | ⊢  |
| : , : , :  |
59 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
60 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
61 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |