| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | , ⊢ |
| : , : , : , : |
1 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
2 | instantiation | 28, 5 | , ⊢ |
| : , : , : |
3 | instantiation | 28, 6 | , ⊢ |
| : , : , : |
4 | instantiation | 30, 7, 53, 8* | , ⊢ |
| : , : |
5 | instantiation | 9, 61, 56, 36, 38, 37, 39, 40, 26, 41 | , ⊢ |
| : , : , : , : , : , : , : |
6 | instantiation | 35, 36, 11, 56, 37, 12, 39, 40, 41, 26 | , ⊢ |
| : , : , : , : , : , : |
7 | instantiation | 10, 11, 12, 51, 52, 49 | , ⊢ |
| : , : |
8 | instantiation | 19, 13, 14 | , ⊢ |
| : , : , : |
9 | theorem | | ⊢ |
| proveit.numbers.addition.rightward_commutation |
10 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure |
11 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
12 | instantiation | 15 | ⊢ |
| : , : , : |
13 | instantiation | 28, 16 | , ⊢ |
| : , : , : |
14 | instantiation | 19, 17, 18 | , ⊢ |
| : , : , : |
15 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
16 | instantiation | 19, 20, 21 | , ⊢ |
| : , : , : |
17 | instantiation | 22, 36, 61, 56, 37, 23, 25, 41, 26 | , ⊢ |
| : , : , : , : , : , : |
18 | instantiation | 35, 56, 61, 36, 24, 37, 25, 41, 26, 27* | , ⊢ |
| : , : , : , : , : , : |
19 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
20 | instantiation | 28, 29 | , ⊢ |
| : , : , : |
21 | instantiation | 30, 45, 58 | , ⊢ |
| : , : |
22 | theorem | | ⊢ |
| proveit.numbers.addition.disassociation |
23 | instantiation | 47 | ⊢ |
| : , : |
24 | instantiation | 47 | ⊢ |
| : , : |
25 | instantiation | 31, 32, 33 | , ⊢ |
| : , : , : |
26 | instantiation | 59, 48, 34 | ⊢ |
| : , : , : |
27 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
28 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
29 | instantiation | 35, 36, 61, 56, 37, 38, 39, 40, 41 | , ⊢ |
| : , : , : , : , : , : |
30 | theorem | | ⊢ |
| proveit.numbers.rounding.round_of_real_plus_int |
31 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
32 | instantiation | 42, 43 | ⊢ |
| : , : |
33 | instantiation | 44, 45 | , ⊢ |
| : |
34 | instantiation | 59, 54, 46 | ⊢ |
| : , : , : |
35 | theorem | | ⊢ |
| proveit.numbers.addition.association |
36 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
37 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
38 | instantiation | 47 | ⊢ |
| : , : |
39 | instantiation | 59, 48, 51 | ⊢ |
| : , : , : |
40 | instantiation | 59, 48, 52 | ⊢ |
| : , : , : |
41 | instantiation | 59, 48, 49 | ⊢ |
| : , : , : |
42 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
43 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.int_within_complex |
44 | axiom | | ⊢ |
| proveit.numbers.rounding.round_is_an_int |
45 | instantiation | 50, 51, 52 | , ⊢ |
| : , : |
46 | instantiation | 59, 57, 53 | ⊢ |
| : , : , : |
47 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
48 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
49 | instantiation | 59, 54, 55 | ⊢ |
| : , : , : |
50 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
51 | assumption | | ⊢ |
52 | assumption | | ⊢ |
53 | instantiation | 59, 60, 56 | ⊢ |
| : , : , : |
54 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
55 | instantiation | 59, 57, 58 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
57 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
58 | instantiation | 59, 60, 61 | ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
60 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
61 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |