logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4, 5, 6, 7, 8, 9, 10*,  ⊢  
  : , : , : , : , : , :
1theorem  ⊢  
 proveit.numbers.addition.association
2reference34  ⊢  
3reference31  ⊢  
4axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
5instantiation11  ⊢  
  : , :
6theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
7instantiation12, 13, 14,  ⊢  
  : , : , :
8instantiation32, 16, 15  ⊢  
  : , : , :
9instantiation32, 16, 17  ⊢  
  : , : , :
10theorem  ⊢  
 proveit.numbers.numerals.decimals.add_2_1
11theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
12theorem  ⊢  
 proveit.logic.sets.inclusion.unfold_subset_eq
13instantiation18, 19  ⊢  
  : , :
14instantiation20, 21,  ⊢  
  :
15instantiation32, 23, 22  ⊢  
  : , : , :
16theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
17instantiation32, 23, 24  ⊢  
  : , : , :
18theorem  ⊢  
 proveit.logic.sets.inclusion.relax_proper_subset
19theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.int_within_complex
20axiom  ⊢  
 proveit.numbers.rounding.round_is_an_int
21instantiation25, 26, 27,  ⊢  
  : , :
22instantiation32, 29, 28  ⊢  
  : , : , :
23theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
24instantiation32, 29, 30  ⊢  
  : , : , :
25theorem  ⊢  
 proveit.numbers.addition.add_real_closure_bin
26assumption  ⊢  
27assumption  ⊢  
28instantiation32, 33, 31  ⊢  
  : , : , :
29theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
30instantiation32, 33, 34  ⊢  
  : , : , :
31theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
32theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
33theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
34theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
*equality replacement requirements