\left(a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{n}, c, d_{1}, d_{2}, \ldots, d_{k}\right) \mapsto \left\{\texttt{\#}(a_{1}, a_{2}, \ldots, a_{m} ~ \left(b_{1} + b_{2} + \ldots + b_{n}\right) ~ d_{1}, d_{2}, \ldots, d_{k}) = \texttt{\#}(a_{1}, a_{2}, \ldots, a_{m} ~ c ~ d_{1}, d_{2}, \ldots, d_{k}) \textrm{ if } \left(a_{1} \in \mathbb{N}^{\leq 9}\right) , \left(a_{2} \in \mathbb{N}^{\leq 9}\right) , \ldots , \left(a_{m} \in \mathbb{N}^{\leq 9}\right), \left(b_{1} \in \mathbb{N}^{\leq 9}\right) , \left(b_{2} \in \mathbb{N}^{\leq 9}\right) , \ldots , \left(b_{n} \in \mathbb{N}^{\leq 9}\right) , c \in \mathbb{N}^{\leq 9}, \left(d_{1} \in \mathbb{N}^{\leq 9}\right) , \left(d_{2} \in \mathbb{N}^{\leq 9}\right) , \ldots , \left(d_{k} \in \mathbb{N}^{\leq 9}\right) , \left(b_{1} + b_{2} + \ldots + b_{n}\right) = c\right..