logo

Expression of type And

from the theory of proveit.numbers.numerals.decimals

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, IndexedVar, Variable, a, b, c, d, k, m, n
from proveit.core_expr_types import b_1_to_n
from proveit.logic import And, Equals, InSet
from proveit.numbers import Add, Digits, one
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
expr = And(ExprRange(sub_expr1, InSet(IndexedVar(a, sub_expr1), Digits), one, m), ExprRange(sub_expr1, InSet(IndexedVar(b, sub_expr1), Digits), one, n), InSet(c, Digits), ExprRange(sub_expr1, InSet(IndexedVar(d, sub_expr1), Digits), one, k), Equals(Add(b_1_to_n), c))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a_{1} \in \mathbb{N}^{\leq 9}\right) \land  \left(a_{2} \in \mathbb{N}^{\leq 9}\right) \land  \ldots \land  \left(a_{m} \in \mathbb{N}^{\leq 9}\right)\land \left(b_{1} \in \mathbb{N}^{\leq 9}\right) \land  \left(b_{2} \in \mathbb{N}^{\leq 9}\right) \land  \ldots \land  \left(b_{n} \in \mathbb{N}^{\leq 9}\right) \land \left(c \in \mathbb{N}^{\leq 9}\right)\land \left(d_{1} \in \mathbb{N}^{\leq 9}\right) \land  \left(d_{2} \in \mathbb{N}^{\leq 9}\right) \land  \ldots \land  \left(d_{k} \in \mathbb{N}^{\leq 9}\right) \land \left(\left(b_{1} +  b_{2} +  \ldots +  b_{n}\right) = c\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4, 5, 6, 7
3ExprRangelambda_map: 8
start_index: 34
end_index: 9
4ExprRangelambda_map: 10
start_index: 34
end_index: 35
5Operationoperator: 23
operands: 11
6ExprRangelambda_map: 12
start_index: 34
end_index: 13
7Operationoperator: 14
operands: 15
8Lambdaparameter: 39
body: 16
9Variable
10Lambdaparameter: 39
body: 17
11ExprTuple20, 29
12Lambdaparameter: 39
body: 18
13Variable
14Literal
15ExprTuple19, 20
16Operationoperator: 23
operands: 21
17Operationoperator: 23
operands: 22
18Operationoperator: 23
operands: 24
19Operationoperator: 25
operands: 26
20Variable
21ExprTuple27, 29
22ExprTuple36, 29
23Literal
24ExprTuple28, 29
25Literal
26ExprTuple30
27IndexedVarvariable: 31
index: 39
28IndexedVarvariable: 32
index: 39
29Literal
30ExprRangelambda_map: 33
start_index: 34
end_index: 35
31Variable
32Variable
33Lambdaparameter: 39
body: 36
34Literal
35Variable
36IndexedVarvariable: 37
index: 39
37Variable
38ExprTuple39
39Variable